Geometry
Wing or Tail Planform
The wing geometry is comprised of a wingbox with fuselage carry-over, an inner section with prescribed taper ratio up to a wing break or "snag", and an outer section with a separately prescribed taper ratio. The geometry is defined relative to a central axis defined by the overall sweep angle, $\Lambda$.
The surface geometry relations derived below correspond to the wing. Most of these apply equally to the tails if the wing parameters are simply replaced with the tail counterparts.
📖 Theory - Chord distribution
The wing or tail surface is assumed to have a two-piece linear planform with constant sweep $\Lambda$, shown in the figure below. The inner and outer surface planforms are defined in terms of the center chord $c_o$ and the inner and outer taper ratios.
\[\begin{aligned} \lambda_s & = & c_s/c_o \\ \lambda_t & = & c_t/c_o \end{aligned}\]
Similarly, the spanwise dimensions are defined in terms of the span $b$ and the normalized spanwise coordinate $\eta$.
\[\begin{aligned} \eta & = & 2y / b \\ \eta_o & = & b_o / b \\ \eta_s & = & b_s/b \end{aligned}\]
For generality, the wing center box width $b_o$ is assumed to be different from the fuselage width to allow possibly strongly non-circular fuselage cross-sections. It will also be different for the tail surfaces. A planform break inner span $b_s$ is defined, where possibly also a strut or engine is attached. Setting $b_s \!=\! b_o$ and $c_s \!=\! c_o$ will recover a single-taper surface.
It's convenient to define the piecewise-linear normalized chord function
\[\begin{aligned} \frac{c {\scriptstyle (\eta)}}{c_o} \; \equiv \; C {\scriptstyle (\eta \, ; \, \eta_o,\eta_s, \lambda_s,\lambda_t)} & = & \left\{ \begin{array}{lcl} \; 1 & , & 0 < \eta < \eta_o \\[0.5em] \displaystyle \; 1 \, + (\lambda_s\!-\!1 \,) \frac{\eta \!-\! \eta_o}{\eta_s\!-\!\eta_o} & , & \eta_o < \eta < \eta_s \\[0.25em] \displaystyle \lambda_s + (\lambda_t\!-\!\lambda_s) \frac{\eta \!-\! \eta_s}{1\!-\!\eta_s} & , & \eta_s < \eta < 1 \end{array} \right. %\label{ceta} \end{aligned}\]
The following integrals will be useful for area, volume, shear, and moment calculations.
\[\begin{aligned} \int_0^{\eta_o} C \:\: {\rm d}\eta & = \eta_o \\ \int_{\eta_o}^{\eta_s} C \:\: {\rm d}\eta & = \frac{1}{2} ( 1\!+\!\lambda_s)(\eta_s\!-\!\eta_o) \\ \int_{\eta_s}^1 C \:\: {\rm d}\eta & = \frac{1}{2} (\lambda_s\!+\!\lambda_t)(1\!-\!\eta_s) \\[0.25em] \int_0^{\eta_o} C^2\:\: {\rm d}\eta & = \eta_o \\ \int_{\eta_o}^{\eta_s} C^2\:\: {\rm d}\eta & = \frac{1}{3} ( 1\!+\!\lambda_s\!+\!\lambda_s^2)(\eta_s\!-\!\eta_o) \\ \int_{\eta_s}^1 C^2\:\: {\rm d}\eta & = \frac{1}{3} (\lambda_s^2\!+\!\lambda_s \lambda_t\!+\!\lambda_t^2)(1\!-\!\eta_s) \\ % \int_{\eta_o}^{\eta_s} C \: (\eta\!-\!\eta_o) \:\: {\rm d}\eta & = \frac{1}{6} ( 1\!+\!2\lambda_s)(\eta_s\!-\!\eta_o)^2 \\ \int_{\eta_s}^1 C \: (\eta\!-\!\eta_s) \:\: {\rm d}\eta & = \frac{1}{6} (\lambda_s\!+\!2\lambda_t)(1\!-\!\eta_s)^2 \\ \int_{\eta_o}^{\eta_s} C^2 \: (\eta\!-\!\eta_o) \:\: {\rm d}\eta & = \frac{1}{12} ( 1\!+\!2\lambda_s\!+\!3\lambda_s^2)(\eta_s\!-\!\eta_o)^2 \\ \int_{\eta_s}^1 C^2 \: (\eta\!-\!\eta_s) \:\: {\rm d}\eta & = \frac{1}{12} (\lambda_s^2\!+\!2\lambda_s\lambda_t\!+\!3\lambda_t^2)(1\!-\!\eta_s)^2 %\label{Cint2} \end{aligned}\]
📖 Theory - Surface area and aspect ratio
The surface area $S$ is defined as the exposed surface area plus the fuselage carryover area.
\[\begin{aligned} S & = 2 \int_0^{b/2} \! c \:\: {\rm d}y \;=\; c_o \, b \, K_c %\label{Sdef} \\ \mathrm{where} \hspace{3em} K_c & = \int_0^1 C \:\: {\rm d}\eta \;=\; \eta_o + {\textstyle \frac{1}{2}}( 1 \!+\!\lambda_s)(\eta_s\!-\!\eta_o) + {\textstyle \frac{1}{2}}(\lambda_s\!+\!\lambda_t )(1 \!-\!\eta_s) \end{aligned}\]
The aspect ratio is then defined in the usual way. This will also allow relating the root chord to the span and the taper ratios.
\[\begin{aligned} {A\hspace{-0.5ex}R}& = & \frac{b^2}{S} %\label{ARdef} \end{aligned}\]
It is also useful to define the wing's mean aerodynamic chord $c_{\rm ma}$ and area-centroid offset ${\scriptstyle \Delta}x_{\rm wing}$ from the center axis.
\[\begin{aligned} \frac{c_{\rm ma}}{c_o} &\!= \frac{1}{c_o} \frac{2}{S} \int_0^{b/2} \! c^2 \; {\rm d}y \;=\; \frac{K_{cc}}{K_c} \\ {\scriptstyle \Delta}x_{\rm wing} &\!= \frac{2}{S} \int_{b_o/2}^{b/2} \! c \, (y \!-\! y_o) \tan\Lambda \; {\rm d}y \;=\; \frac{K_{cx}}{K_c} \, b \: \tan\Lambda \\ x_{\rm wing}& = x_{\rm wbox}\,+\, {\scriptstyle \Delta}x_{\rm wing} \\[0.25em] \mathrm{where} \hspace{1em} K_{cc} &\!= \int_0^1 C^2 \:\: {\rm d}\eta \nonumber \\ &\!= \eta_o + \frac{1}{3} ( 1 \!+\!\lambda_s\!+\!\lambda_s^2)(\eta_s\!-\!\eta_o) + \frac{1}{3} (\lambda_s^2\!+\!\lambda_s \lambda_t\!+\!\lambda_t^2)(1\!-\!\eta_s) \hspace{3em} \\[0.25em] K_{cx} &\!= \int_{\eta_o}^1 C \: (\eta\!-\!\eta_o) \:\: {\rm d}\eta \nonumber \\ &\!= \frac{1}{12} ( 1 \!+\!2\lambda_s)(\eta_s\!-\!\eta_o)^2 + \frac{1}{12} (\lambda_s\!+\!2\lambda_t)(1\!-\!\eta_s)^2 + \frac{1}{4} (\lambda_s\!+\!\lambda_t)(1\!-\!\eta_s)(\eta_s\!-\!\eta_o) \hspace{3em} \end{aligned}\]
The wing area centroid is used in the fuselage bending load calculations as described earlier.
Reference quantities
The aircraft reference quantities are chosen to be simply the values for the wing.
\[\begin{aligned} b_{\rm ref} &\!= (b)_{\rm wing}\\ S_{\rm ref} &\!= (S)_{\rm wing}\\ {A\hspace{-0.5ex}R}_{\rm ref} &\!= ({A\hspace{-0.5ex}R})_{\rm wing}\\ c_{\rm ref} &\!= (c_{\rm ma})_{\rm wing} \end{aligned}\]
TASOPT.aerodynamics.set_wing_geometry!
— Methodsetwinggeometry!(W,CL,qinf,wing)
Sizes wing area, span, root chord from q
, CL
, W
, AR
at given point (taken as start-of-cruise in wsize
).
🔃 Inputs and Outputs
Inputs:
W::Float64
: Aircraft weight.CL::Float64
: Lift coefficient.qinf::Float64
: Freestream dynamic head.wing::TASOPT.structures.Wing
: Wing structure
See Sections 2.5 and 3.4.1 of the TASOPT Technical Desc.