Lift

Surface lift distributions $\tilde{p}$ are defined in terms of a baseline piecewise-linear distribution $p{\scriptstyle (\eta)}$ defined like the chord planform, but with its own taper ratios $\gamma_s$ and $\gamma_t$.

Piecewise-linear aerodynamic load $\tilde{p} {\scriptstyle (\eta)}$, with modifications at center and tip.

The segments are integrated to compute the lift contribution to the wing root load, $p_o$, as required by structural computations. The sectional lift distribution is treated as an input to induced drag and surface drag computations.

📖 Theory - Wing lift distribution

The lift distribution "taper ratios" are defined using local section $c_\ell$ factors $r_{c_{\ell s}}$ and $r_{c_{\ell t}}$.

\[\begin{aligned} \gamma_s & = r_{c_{\ell s}} \, \lambda_s \\ \gamma_t & = r_{c_{\ell t}} \, \lambda_t \\ \frac{p {\scriptstyle (\eta)}}{p_o} \; \equiv \; P {\scriptstyle (\eta \, ; \, \eta_o,\eta_s, \gamma_s,\gamma_t)} & = \left\{ \begin{array}{lcl} \; 1 & , & 0 < \eta < \eta_o \\[0.5em] \displaystyle \: 1 + (\gamma_s\!- 1\,) \frac{\eta \!-\! \eta_o}{\eta_s\!-\!\eta_o} & , & \eta_o < \eta < \eta_s \\[0.25em] \displaystyle \gamma_s + (\gamma_t\!-\!\gamma_s) \frac{\eta \!-\! \eta_s}{1\!-\!\eta_s} & , & \eta_s < \eta < 1 \end{array} \right. %\label{peta} \end{aligned}\]

To get the actual aerodynamic load $\tilde{p}$, lift corrections $\Delta L_o$ and $\Delta L_t$ are applied to account for the fuselage carryover and tip lift rolloff, as sketched in the figure above. The detailed shapes of these modifications are not specified, but instead only their integrated loads are defined by the following integral relation.

\[\begin{aligned} \frac{L_{\rm wing}}{2} \:\: = \; \int_0^{b/2} \!\! \tilde{p} \:\: {\rm d}y & = & \int_0^{b/2} \!\! p \:\: {\rm d}y \:+\: \Delta L_o \:+\: \Delta L_t \end{aligned}\]

The corrections are specified in terms of the center load magnitude $p_o$ and the $f_{L_{\scriptstyle o}}, f_{L_{\scriptstyle t}}$ adjustment factors.

\[\begin{aligned} \Delta L_o & = f_{L_{\scriptstyle o}}\, p_o \, \frac{b_o}{2} \;=\; f_{L_{\scriptstyle o}}\, p_o \, \frac{b}{2} \, \eta_o %\label{DLo} \\[0.25em] \Delta L_t & = f_{L_{\scriptstyle t}}\, p_t \, c_t \;=\; f_{L_{\scriptstyle t}}\, p_o \, c_o \, \gamma_t\, \lambda_t %\label{DLt} \\[0.5em] f_{L_{\scriptstyle o}}& \simeq -0.5 \\ f_{L_{\scriptstyle t}}& \simeq -0.05 \end{aligned}\]

Lift load magnitude (Wing only)

The wing's $p_o$ center loading magnitude is determined by requiring that the aerodynamic loading integrated over the whole span is equal to the total weight times the load factor, minus the tail lift.

\[\begin{aligned} L_{\rm total} = 2 \int_0^{b/2} \!\tilde{p}{\scriptstyle (\eta)}\:\: {\rm d}y \;=\; p_o \, b \!\int_0^1 \!P{\scriptstyle (\eta)}\:\: {\rm d}\eta \;+\; 2 \Delta L_o \,+\, 2 \Delta L_t &\!=\!& N W \,-\, (L_{\rm htail})_N \hspace{2em} %\label{totlift} \end{aligned}\]

For structural sizing calculations $N \!=\! N_{\rm lift}$ is chosen, and the appropriate value of $(L_{\rm htail})_N$ is the worst-case (most negative) tail lift expected in the critical sizing case. One possible choice is the trimmed tail load at dive speed, where $N_{\rm lift}$ is most likely to occur.

The wing area $S_{def}$ and aspect ratio $AR_{def}$ definitions allow the root chord and the tip lift drop $\Delta L_t$ to be expressed as

\[\begin{aligned} c_o & = b \, K_o \\ \Delta L_t & = f_{L_{\scriptstyle t}}\, p_o \, b \, K_o \: \gamma_t\, \lambda_t %\label{DLt2} \\ \mathrm{where} \hspace{2em} K_o &\!\equiv\! \frac{1}{K_c \, {A\hspace{-0.5ex}R}} \end{aligned}\]

so that $L_{\rm total}$ can be evaluated to the following. The $P{\scriptstyle (\eta)}$ integrals have the form as for $C{\scriptstyle (\eta)}$, given by $\int_0^{\eta_o} C \:\: {\rm d}\eta$$\int_{\eta_s}^1 C^2 \: (\eta\!-\!\eta_s) \:\: {\rm d}\eta$, but with the $\lambda$'s replaced by $\gamma$'s.

\[\begin{aligned} p_o \, b \, K_p & \!=\! N W - (L_{\rm htail})_N \hspace{2em} \\ \mathrm{where} \hspace{3em} K_p & \!=\! \eta_o + {\textstyle \frac{1}{2}}(1 \!+\! \gamma_s) (\eta_s \!\!-\! \eta_o) + {\textstyle \frac{1}{2}}(\gamma_s \!+\! \gamma_t) (1 \!-\! \eta_s) \nonumber \\ & \!+\! f_{L_{\scriptstyle o}}\eta_o \,+\, 2 f_{L_{\scriptstyle t}}K_o \gamma_t\lambda_t \hspace{2em} \end{aligned}\]

The root and planform-break loadings can then be explicitly determined.

\[\begin{aligned} p_o & \!=\! \frac{N W - (L_{\rm htail})_N}{K_p \, b} %\label{podef} \\ p_s & \!=\! p_o \, \gamma_s \\ p_t & \!=\! p_o \, \gamma_t \end{aligned}\]

TASOPT.aerodynamics.wingpoMethod
wingpo(wing, rclt, rcls, N, W, Lhtail)

Computes wing root ("center") loading $p_o$ to balance the net load.

\[N*W - L_{h tail} imes 2*∫p(η) dy + 2ΔL₀ + 2ΔLₜ = N*W - (L_{htail}).\]

🔃 Inputs and Outputs

Inputs:

  • wing::TASOPT.structures.wing: Wing structure.
  • rclt::Float64: tip /root cl ratio (clt/clo)
  • rcls::Float64: break/root cl ratio (cls/clo)
  • N::Float64: Max vertical load factor for wing bending loads
  • W::Float64: Aircraft Weight
  • Lhtail::Float64: Worst-case (most negative) tail lift expected in the critical sizing case

Outputs:

  • po::Float64: Wing root loading magnitude.

See Section 2.6.2 of the TASOPT Technical Desc.

source
TASOPT.aerodynamics.tailpo!Method
tailpo!(tail,S,qne; t_fac = 1.0)

Calculates stabilizer span, root chord, and root loading based on the never-exceed dynamic pressure, maximum CL, sweep, and aspect ratio.

🔃 Inputs and Outputs

Inputs:

  • tail::TASOPT.structures.tail: Tail structure.
  • S::Float64: Stabilizer area.
  • qne::Float64: Never-exceed dynamic pressure.
  • t_fac::Float64: Tail Factor (1 for Htail/Wing, 2 for Vtail).

Outputs:

  • po::Float64: Stabilizer root loading.
  • b::Float64: Stabilizer wingspan.

See Geometry or Section 2.3.2 and 2.9.6 of the TASOPT Technical Description.

source
TASOPT.aerodynamics.wingclMethod
wingcl(wing, gammat, gammas,
        CL, CLhtail,
        fduo, fdus, fdut)

Calculates section cl at eta = ηo,ηs,1

🔃 Inputs and Outputs

Inputs:

  • Wing::TASOPT.Wing: Wing Structure
  • γt::Float64, γs::Float64: Wing lift distribution "taper" ratios for outer and inner wing sections, respectively.
  • CL::Float64, CLhtail::Float64: Overall lift coefficient of wing and horizontal tail, respectively.
  • duo::Float64, dus::Float64, dut::Float64: Velocity-change fractions at wing root, break ("snag"), and tip due to fuselage flow.

Outputs:

  • clo::Float64, cls::Float64, clt::Float64: Section lift coefficient at root, wing break ("snag"), and tip.

See Sections 2.5 and 2.6 of the TASOPT Technical Desc. Called by cdsum!.

source