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1 Governing equations

Starting equations, with some assumed known c,(1):

dh — vdp = T'ds (1)
pv = RT (2)
dh = ¢, dT (3)

2 Complete enthalpy calculation

The complete enthalpy function is obtained by integration of the known c,(r) function,
T
hry = Ahy + / cp(m) dT (4)
Ts

where Ahy is the heat of formation, and 7 is the standard condition at which Ahy is defined,
typically 75 = 298 K.

3 Pressure calculation

For an adiabatic compressor or turbine, the entropy change is specified via a polytropic
efficiency

Tds = (1 — 77;011) c, dT (5)

with 77;011 used when d7'>0 as in a compressor, and 77;011 used when d7'< 0 as in a turbine,
so that ds is always positive. All the above relations above are combined into the definition

of an entropy-complement variable o (), which then defines p(r).

dp 4 6 dT 4, do
o = el T Thel (6)
T dT InT
or) = / cp(T)T = /IT cpnT) d(InT’) (7)
o(T) — O(Tv)
pr)y = po eXp<npioll T(J) (8)

The compression or expansion process is assumed to occur over py...p and Ty...T.



4 Properties of a gas mixture

A gas mixture is specified with the mass fraction vector @, whose components are the mass
fractions of the mixture constituents. Similarly, the components of R, ¢,, h, ¢ are gas
properties of the constituents. The overall properties are then

R = ad-R (9)
Cp(T) = - G(T) (10)
hay = @- he (11)
o(T) a - G(T) (12)

5 Calculations for turbomachine components

The (); total-quantity subscript will be omitted here for convenience.

5.1 Compressor

In a compressor, the total-pressure ratio between the exit station 3 and inlet station 2

D3
D2

(13)

M. =

is typically specified. The inlet conditions p, and T, are also assumed known. The objective
here is to determine the corresponding exit total temperature 75.

We first recast the specified pressure ratio definition in residual form.

nm = In 2 = - 14
nm n 0, R (03 — 09) (14)
O (Ts) 09 In 7.
YETR TR )
dR Cp(T53)
R = = 2 16
W) = 9™ = R (16)

This is then solved for the unknown 73 by the standard Newton method, with the sequence
of progressively better iterates T3, T7 ... Ta. A good initial guess TY is obtained by assuming
a fixed isentropic exponent (y—1)/v = R/c, taken from the known (), condition.

Cpy = Cp(In) (17)

) = T, 7r(1:‘3/(617277;)01) (18)
R(1r)

Tt — 17— & 19

3 3 R,(T") ( )

After convergence, the exit hs is evaluated directly.

hs = h(s) (20)



5.2 Combustor

In a combustor, both the inlet total temperature 73 and exit total temperature 7} are
typically specified. The objective is to determine the fuel mass fraction which gives this
temperature change.

It will be assumed that the fuel has the chemical form
Cue Hyyy Oz Nay

and the combustion reaction is limited to the fuel and atmospheric oxygen, and is complete
(i.e. nitrogen oxide and carbon monoxide production is neglected).

Ca:c Ha:H Omo NmN + no, 02 —  NCo, COZ + NH,0O HZO + NN, N2 (21)

Equating the atom numbers gives the reaction mole numbers.

No, = ¢ + Z‘H/4 — 1‘0/2 (22)
nco, = Ic¢C (23)
nNH,0 = JIH/2 (24)
nN, = l‘N/2 (25)
Using mole numbers together with the atomic masses
mec = 12.01
mpg = 1.01
mo = 16.00
my = 14.01
gives the reactant masses.
M02 = To, (2m0) (26)
Mgo, = nco, (mc + 2mo) (27)
My,0 = nu,0 (2mu + mo) (28)
]\41\]2 = NN, (2mN) (29)
Mfuel = xcmMmgc + rgmyg + Tomo + TNMN (30)

The reaction change fraction vector components -; in the following table are then calculated,

L[] o 8] Vi |
Ny [1]0.7532[ 0 [ n, Mx,/Mpel
O, |2(0.2315| 0 |—ny Mo, /Myl
CO3 | 310.0006 | 0 | my Mco,/Miye
HyO [4]0.0020 | 0 | n, Mu,o0/Mga
Ar |5]0.0127| 0 0

fuel | 6 0 1 1—mny

where the burner efficiency 7, is the fraction of fuel that undergoes reaction. Note that the
fraction vector component sums must all be exactly unity: > o; =1, > 6, =1, > v, = 1.
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The total enthalpies of all the constituents are known from the specified 73 and 7}, and also
at the known fuel temperature 1t.

hs = h;ms) (31)
ﬁ4 = hi(T4) (32)
he = i) (33)

The enthalpy balance across the combustor is
Maic O+ hy + Mgyl 8- Mg = My O - hy + Miguer 7 - Py (34)

from which the fuel mass fraction is obtained directly.

I ue _»'E - _»'h
f = W'%f 1 Oi _»4 (_)f 13 (35)
Majr /B'h/f_'y‘hzl

The mass fraction vector X of the combustion products is obtained from the mass balance
across the combustor,

(Maie + Mggel) X = 1Maie @ + Tguel 7 (36)
- aA+fy
1+ f (37)

which can then be used to obtain the net properties of the combustion products.
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5.3 Mixer

Mixing will typically occur between the combustor discharge flow and the turbine cooling
flow. In general, the two streams will have two different chemical compositions specified by
their mass fraction vectors Xa and Xb, two different temperatures 1, and 7}, and two different
constituent enthalpy vectors ﬁa = h;(T,) and ﬁb = h;(1,). The species mass flow balance gives
the composition mass fraction vector X of the mixed gas.

(M + 1) X = 11 Aa + 1y N (40)
S Tig Ae + T N
= (41)

Assuming no chemical reaction takes place, the enthalpy balance equation is
(Tha —+ mb) X . E(T) = Tha Xa . Ea + mb Xb . }_ib (42)

which can be numerically inverted for the mixed temperature 7.



5.4 Turbine

In a turbine, the total-enthalpy difference between the exit station 5 and inlet station 4 is
typically known from the compressor—turbine work balance.

(Mair + Miguer) (hs — ha) = Maic(he — h3) (43)
ho — h3

Ah = hs —hy, = 44

5 — Iy 157 (44)

The objective here is to determine the corresponding total-pressure ratio.

T, = b5 (45)

P4

The procedure is similar to that for the compressor, except that h(r) is used in the Newton
residual.

Ras) = has)y — hy — Ah =0 (46)
dR
R(1) = T = G (47)

The Newton method is started by assuming a fixed ¢, taken from the known (), condition.

Cpy = Cp(T4) (48)

TY = T, + Ah/c,, (49)
R(Tr)

Tt = 1 — ° 50

; e (50)

After convergence, the total-pressure ratio and ps are evaluated directly.

1 o) — a(n))
Ty = ex _ 51
' P (npol R ( )

Ps = PaTy (52)

5.5 Inlet or Nozzle

An inlet or nozzle with losses can be considered as a turbine with zero efficiency, and is

typically specified via a total-pressure drop ratio.
b2

T = — 93

' Po (53)

In the limit 7,0, — 0, the turbine case above then reduces to the trivial relations

P2 = Po Ty (54)
T2 == TO (55)
hy = h(Tz) = hg (56)

with no need for Newton iteration.



Appendix: Spline representations

General

A cubic spline representation of a function y(z) requires the following discrete values at
t=1,2...N nodes:

T spline parameter values
Yi function values
Y function derivative values, (dy/dx);

On each interval i —1...4, the four end values y; 1, v;, y;_,, y; uniquely define a cubic-
polynomial y(z) over that interval. The union of all intervals then defines the overall y(z)
function.

The derivative values y; are obtained from z;,y; by solving a linear system of equations
expressing 2nd-derivative continuity across all the interior nodes ¢ = 2,3... N —1, together
with two zero 3rd-derivative end conditions at ¢ = 1, N. This system of equations produces
a tridiagonal matrix which is very rapidly solved in O(N) arithmetic operations.

Current application

Two splines are first generated using the tabulated values T;, ¢,
1) ¢y(r) spline:
z, = T, (table values)
Yi Cp; (table values)
yi = (dep/dT);  (via spline system solution)

2) ¢p(nT) spline:

z; = In(Ty) (table values)
Yi = ¢, (table values)
yi = (de,/dInT);  (via spline system solution)

Then two related splines h(r), o(n1) are constructed as follows, with Ahy being the heat of
formation.

3) h(r) spline:
r, = 1T;

Yy = Cp;

T;
yi = Ahy +/ cp(r) dT
Ts

4) o(inT) spline:

x; = In(T;)

y; = Cp,;
InT;

Y = / cpnT) d(InT)
InTj

Since the splined ¢,(1) and ¢,(uT) are piecewise-cubic, exact integrations can be used here to
give perfect consistency between the related splines.



