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1 Governing equations

Starting equations, with some assumed known 


p

(T ):

dh � v dp = T ds (1)

pv = RT (2)

dh = 


p

(T ) dT (3)

2 Complete enthalpy 
al
ulation

The 
omplete enthalpy fun
tion is obtained by integration of the known 


p

(T ) fun
tion,

h(T ) � �h

f

+

Z

T

T

s




p

(T ) dT (4)

where �h

f

is the heat of formation, and T

s

is the standard 
ondition at whi
h �h

f

is de�ned,

typi
ally T

s

= 298K.

3 Pressure 
al
ulation

For an adiabati
 
ompressor or turbine, the entropy 
hange is spe
i�ed via a polytropi


eÆ
ien
y

T ds =

�

1� �

�1

pol

�




p

dT (5)

with �

+1

pol

used when dT > 0 as in a 
ompressor, and �

�1

pol

used when dT < 0 as in a turbine,

so that ds is always positive. All the above relations above are 
ombined into the de�nition

of an entropy-
omplement variable �(T ), whi
h then de�nes p(T ).

dp

p

= �

�1

pol




p

R

dT

T

= �

�1

pol

d�

R

(6)

�(T ) �

Z

T

T

s




p

(T )

dT

T

=

Z

lnT

lnT

s




p

(lnT ) d(lnT ) (7)

p(T ) = p

0

exp

�

�

�1

pol

�(T )� �(T

0

)

R

�

(8)

The 
ompression or expansion pro
ess is assumed to o

ur over p

0

: : : p and T

0

: : : T .
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4 Properties of a gas mixture

A gas mixture is spe
i�ed with the mass fra
tion ve
tor ~�, whose 
omponents are the mass

fra
tions of the mixture 
onstituents. Similarly, the 
omponents of

~

R, ~


p

,

~

h, ~� are gas

properties of the 
onstituents. The overall properties are then

R = ~� �

~

R (9)




p

(T ) = ~� � ~


p

(T ) (10)

h(T ) = ~� �

~

h(T ) (11)

�(T ) = ~� � ~�(T ) (12)

5 Cal
ulations for turboma
hine 
omponents

The ()

t

total-quantity subs
ript will be omitted here for 
onvenien
e.

5.1 Compressor

In a 
ompressor, the total-pressure ratio between the exit station 3 and inlet station 2

�




�

p

3

p

2

(13)

is typi
ally spe
i�ed. The inlet 
onditions p

2

and T

2

are also assumed known. The obje
tive

here is to determine the 
orresponding exit total temperature T

3

.

We �rst re
ast the spe
i�ed pressure ratio de�nition in residual form.

ln�




= ln

p

3

p

2

=

�

pol

R

(�

3

� �

2

) (14)

R(T

3

) �

�(T

3

)

R

�

�

2

R

�

ln�




�

pol

= 0 (15)

R

0

(T

3

) �

dR

dT

(T

3

) =




p

(T

3

)

RT

3

(16)

This is then solved for the unknown T

3

by the standard Newton method, with the sequen
e

of progressively better iterates T

1

3

; T

2

3

: : : T

n

3

. A good initial guess T

0

3

is obtained by assuming

a �xed isentropi
 exponent (
�1)=
 = R=


p

taken from the known ( )

2


ondition.




p

2

= 


p

(T

2

) (17)

T

0

3

= T

2

�

R=(


p

2

�

pol

)




(18)

T

n+1

3

= T

n

3

�

R(T

n

3

)

R

0

(T

n

3

)

(19)

After 
onvergen
e, the exit h

3

is evaluated dire
tly.

h

3

= h(T

3

) (20)
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5.2 Combustor

In a 
ombustor, both the inlet total temperature T

3

and exit total temperature T

4

are

typi
ally spe
i�ed. The obje
tive is to determine the fuel mass fra
tion whi
h gives this

temperature 
hange.

It will be assumed that the fuel has the 
hemi
al form

C

x

C

H

x

H

O

x

O

N

x

N

and the 
ombustion rea
tion is limited to the fuel and atmospheri
 oxygen, and is 
omplete

(i.e. nitrogen oxide and 
arbon monoxide produ
tion is negle
ted).

C

x

C

H

x

H

O

x

O

N

x

N

+ n

O

2

O

2

! n

CO

2

CO

2

+ n

H

2

O

H

2

O + n

N

2

N

2

(21)

Equating the atom numbers gives the rea
tion mole numbers.

n

O

2

= x

C

+ x

H

=4 � x

O

=2 (22)

n

CO

2

= x

C

(23)

n

H

2

O

= x

H

=2 (24)

n

N

2

= x

N

=2 (25)

Using mole numbers together with the atomi
 masses

m

C

= 12:01

m

H

= 1:01

m

O

= 16:00

m

N

= 14:01

gives the rea
tant masses.

M

O

2

= n

O

2

(2m

O

) (26)

M

CO

2

= n

CO

2

(m

C

+ 2m

O

) (27)

M

H

2

O

= n

H

2

O

(2m

H

+m

O

) (28)

M

N

2

= n

N

2

(2m

N

) (29)

M

fuel

= x

C

m

C

+ x

H

m

H

+ x

O

m

O

+ x

N

m

N

(30)

The rea
tion 
hange fra
tion ve
tor 
omponents 


i

in the following table are then 
al
ulated,

i �

i

�

i




i

N

2

1 0:7532 0 �

b

M

N

2

=M

fuel

O

2

2 0:2315 0 ��

b

M

O

2

=M

fuel

CO

2

3 0:0006 0 �

b

M

CO

2

=M

fuel

H

2

O 4 0:0020 0 �

b

M

H

2

O

=M

fuel

Ar 5 0:0127 0 0

fuel 6 0 1 1��

b

where the burner eÆ
ien
y �

b

is the fra
tion of fuel that undergoes rea
tion. Note that the

fra
tion ve
tor 
omponent sums must all be exa
tly unity:

P

�

i

= 1,

P

�

i

= 1,

P




i

= 1.
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The total enthalpies of all the 
onstituents are known from the spe
i�ed T

3

and T

4

, and also

at the known fuel temperature T

f

.

~

h

3

= h

i

(T

3

) (31)

~

h

4

= h

i

(T

4

) (32)

~

h

f

= h

i

(T

f

) (33)

The enthalpy balan
e a
ross the 
ombustor is

_m

air

~� �

~

h

3

+ _m

fuel

~

� �

~

h

f

= _m

air

~� �

~

h

4

+ _m

fuel

~
 �

~

h

4

(34)

from whi
h the fuel mass fra
tion is obtained dire
tly.

f �

_m

fuel

_m

air

=

~� �

~

h

4

� ~� �

~

h

3

~

� �

~

h

f

� ~
 �

~

h

4

(35)

The mass fra
tion ve
tor

~

� of the 
ombustion produ
ts is obtained from the mass balan
e

a
ross the 
ombustor,

( _m

air

+ _m

fuel

)

~

� = _m

air

~� + _m

fuel

~
 (36)

~

� =

~� + f~


1 + f

(37)

whi
h 
an then be used to obtain the net properties of the 
ombustion produ
ts.

R

4

=

~

� �

~

R

4

(38)




p

4

=

~

� � ~


p

4

(39)

5.3 Mixer

Mixing will typi
ally o

ur between the 
ombustor dis
harge 
ow and the turbine 
ooling


ow. In general, the two streams will have two di�erent 
hemi
al 
ompositions spe
i�ed by

their mass fra
tion ve
tors

~

�

a

and

~

�

b

, two di�erent temperatures T

a

and T

b

, and two di�erent


onstituent enthalpy ve
tors

~

h

a

= h

i

(T

a

) and

~

h

b

= h

i

(T

b

). The spe
ies mass 
ow balan
e gives

the 
omposition mass fra
tion ve
tor

~

� of the mixed gas.

( _m

a

+ _m

b

)

~

� = _m

a

~

�

a

+ _m

b

~

�

b

(40)

~

� =

_m

a

~

�

a

+ _m

b

~

�

b

_m

a

+ _m

b

(41)

Assuming no 
hemi
al rea
tion takes pla
e, the enthalpy balan
e equation is

( _m

a

+ _m

b

)

~

� �

~

h(T ) = _m

a

~

�

a

�

~

h

a

+ _m

b

~

�

b

�

~

h

b

(42)

whi
h 
an be numeri
ally inverted for the mixed temperature T .
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5.4 Turbine

In a turbine, the total-enthalpy di�eren
e between the exit station 5 and inlet station 4 is

typi
ally known from the 
ompressor{turbine work balan
e.

( _m

air

+ _m

fuel

)(h

5

� h

4

) = _m

air

(h

2

� h

3

) (43)

�h � h

5

� h

4

=

h

2

� h

3

1 + f

(44)

The obje
tive here is to determine the 
orresponding total-pressure ratio.

�

t

�

p

5

p

4

(45)

The pro
edure is similar to that for the 
ompressor, ex
ept that h(T ) is used in the Newton

residual.

R(T

5

) � h(T

5

) � h

4

� �h = 0 (46)

R

0

(T

5

) �

dR

dT

(T

5

) = 


p

(T

5

) (47)

The Newton method is started by assuming a �xed 


p

taken from the known ()

4


ondition.




p

4

= 


p

(T

4

) (48)

T

0

5

= T

4

+ �h=


p

4

(49)

T

n+1

5

= T

n

5

�

R(T

n

5

)

R

0

(T

n

5

)

(50)

After 
onvergen
e, the total-pressure ratio and p

5

are evaluated dire
tly.

�

t

= exp

 

1

�

pol

�(T

5

)� �(T

4

)

R

!

(51)

p

5

= p

4

�

t

(52)

5.5 Inlet or Nozzle

An inlet or nozzle with losses 
an be 
onsidered as a turbine with zero eÆ
ien
y, and is

typi
ally spe
i�ed via a total-pressure drop ratio.

�

i

�

p

2

p

0

(53)

In the limit �

pol

!0, the turbine 
ase above then redu
es to the trivial relations

p

2

= p

0

�

i

(54)

T

2

= T

0

(55)

h

2

= h(T

2

) = h

0

(56)

with no need for Newton iteration.

5



Appendix: Spline representations

General

A 
ubi
 spline representation of a fun
tion y(x) requires the following dis
rete values at

i = 1; 2 : : :N nodes:

x

i

spline parameter values

y

i

fun
tion values

y

0

i

fun
tion derivative values, (dy=dx)

i

On ea
h interval i�1 : : : i, the four end values y

i�1

; y

i

; y

0

i�1

; y

0

i

uniquely de�ne a 
ubi
-

polynomial y(x) over that interval. The union of all intervals then de�nes the overall y(x)

fun
tion.

The derivative values y

0

i

are obtained from x

i

; y

i

by solving a linear system of equations

expressing 2nd-derivative 
ontinuity a
ross all the interior nodes i = 2; 3 : : :N�1, together

with two zero 3rd-derivative end 
onditions at i = 1; N . This system of equations produ
es

a tridiagonal matrix whi
h is very rapidly solved in O(N) arithmeti
 operations.

Current appli
ation

Two splines are �rst generated using the tabulated values T

i

, 


p

i

:

1) 


p

(T ) spline:

x

i

= T

i

(table values)

y

i

= 


p

i

(table values)

y

0

i

= (d


p

=dT )

i

(via spline system solution)

2) 


p

(lnT ) spline:

x

i

= ln(T

i

) (table values)

y

i

= 


p

i

(table values)

y

0

i

= (d


p

=d lnT )

i

(via spline system solution)

Then two related splines h(T ), �(lnT ) are 
onstru
ted as follows, with �h

f

being the heat of

formation.

3) h(T ) spline:

x

i

= T

i

y

0

i

= 


p

i

y

i

= �h

f

+

Z

T

i

T

s




p

(T ) dT

4) �(lnT ) spline:

x

i

= ln(T

i

)

y

0

i

= 


p

i

y

i

=

Z

lnT

i

lnT

s




p

(lnT ) d(lnT )

Sin
e the splined 


p

(T ) and 


p

(lnT ) are pie
ewise-
ubi
, exa
t integrations 
an be used here to

give perfe
t 
onsisten
y between the related splines.
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