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1 Summary

The turbofan model described here is used for two purposes:
1) Sizing of a turbofan engine to obtain a specified thrust at design conditions, and
2) Calculations for a given engine at off-design conditions, with a specified thrust or Tt 4.

It is largely based on the formulation of Kerrebrock [1], with a number of modifications.
Turbine cooling flow which bypasses the combustor is introduced, and a multi-constituent
gas model with variable cp(T ) is used for all the flowpath calculations.

2 Nomenclature

Variables

A flowpath area

a speed of sound ( =
√
TR cp/(cp−R) )

ff fuel mass flow fraction ( = ṁfuel/ṁcore )
fo mass flow offtake fraction ( = ṁofft/ṁcore )
fc total turbine-cooling mass flow fraction ( = ṁcool/ṁcore )
F net effective thrust force
M Mach number ( = u/a )
m̄ component corrected mass flow ( = ṁ

√
Tt/Tref/(pt/pref) )

N̄ component corrected rotation speed ( = N/
√
Tt/Tref )

ṁcore core mass flow through LPC
ṁofft bleed mass flow offtake, assumed to be at LPC discharge
Pofft shaft power offtake from LPC or fan
Pprop net effective propulsive power
h, ht static and total complete enthalpy
p, pt static and total pressure
T, Tt static and total temperature
u velocity
α bypass ratio ( = ṁfan/ṁcore )
ε blade row cooling flow fraction relative to compressor air
∆h( ) total enthalpy jump across component ( )
π( ) total pressure ratio across component ( )
ηpol( ) polytropic efficiency of component ( )

η( ) overall total-to-total efficiency of component ( ), except for combustor
ηb combustor efficiency, or fraction of fuel undergoing combustion
ε l, εh spool windage, bearing, and gear power loss fractions
cpi (T ) specific heat of gas constituent i
hi(T ) complete enthalpy of gas constituent i
σi(T ) entropy-complement function of gas constituent i ( =

∫
(cpi/T ) dT )

Ri ideal-gas constant of constituent i
αi, βi, λi constituent i mass fractions for air, fuel vapor, combustion product
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The constituent property values and the mass fractions will also be denoted as a vector, e.g.

αi = ~α , hi = ~h , cpi = ~cp . . .

where i is the constituent gas index.

Subscripts

( )f fan quantity
( )lc low pressure compressor (LPC) quantity
( )hc high pressure compressor (HPC) quantity
( )ht high pressure turbine (HPT) quantity
( )lt low pressure turbine (LPT) quantity
( )fn fan nozzle quantity
( )tn turbine nozzle quantity
( )...D design-case quantity

3 Pressure, Temperature, Enthalpy Calculations

3.1 Standard relations

The standard constant–cp equations connecting a baseline state To, ho, po to some other
state T, h, p are the familiar caloric and isentropic relations, with the latter possibly having
a polytropic efficiency ηpol included to account for a non-isentropic process.

γ ≡ cp/(cp−R) (1)

∆h ≡ h− ho = cp (T−To) (2)

π ≡ p

po
=

(
T

To

)ηpol±1γ/(γ−1)

(3)

The +1/−1 exponent on ηpol indicates a compression/expansion process, respectively. These
relations will be used for air close to ambient conditions, for which cp = 1004 J/kg-K and
γ=1.4 are nearly constant.

3.2 Gas mixture properties

For a gas or gas mixture with a temperature-dependent cp(T ) relations (2)–(3) are not valid,
and will be replaced here. The overall gas-mixture functions cp(T ), h(T ), σ(T ), R are computed
using the individual cpi (T ), hi(T ), σi(T ), Ri constituent functions and the mass fractions αi,
βi, λi. For air we have

cp(T ) =
∑
i

αi cpi (T ) = ~α · ~cp(T ) (4)

h(T ) =
∑
i

αi hi(T ) = ~α · ~h(T ) (5)

σ(T ) =
∑
i

αi σi(T ) = ~α · ~σ(T ) (6)

R =
∑
i

αiRi = ~α · ~R (7)
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while for fuel vapor βi is used instead of αi, and for the combustion products λi is used instead
of αi. The combustion relations and the calculation of λi are derived in the related document
Thermally-Perfect Gas Calculations. Also derived are replacement relations for (2)–(3) for
the variable–cp gas. All these results will be summarized in the subsequent sections here.
The function Jacobian derivatives ∂(output)/∂(input) will also be derived for each case.
These are required for off-design performance calculations via the Newton method.

3.3 Enthalpy prescribed

Occasionally it is necessary to obtain the temperature from a specified enthalpy. This is
performed by inverting the h(T ) function via the Newton method.

initial guess: T = Tguess (e.g. standard temperature) (8)

solve: RT (T ; hspec) ≡ h(T ) − hspec = 0 → T (9)

The overall calculation will be denoted by

T = FT (~α, hspec ; Tguess) (10)

where the ~α argument is required to evaluate the h(T ) function in (9), via (5).

The derivative of the calculated temperature is simply the inverse of the specific heat.

dT

dh
=

1

cp(T )
(11)

3.4 Pressure ratio prescribed

For prescribed po, To, π, ηpol, the new state p, T, h after a compression/expansion process is
computed as follows.

σo = σ(To) (12)

cpo = cp(To) (13)

initial guess: T = To π
Ro/(cpo ηpol

±1) (14)

solve: Rp(T ; po, To, π) ≡ σ(T )−σo
R

− ln π

ηpol
±1

= 0 → T (15)

then: p = po π (16)

h = h(T ) (17)

The solution for T is via Newton iteration. The overall calculation will be denoted by

{p, T, h, cp, R} = Fp
(
~α, po, To, π, ηpol

±1
)

(18)

The function Jacobian derivatives ∂ {p, T, h} /∂ {po, To, π} are obtained by first implicitly
differentiating the residual function (15) with respect to the specified po, To, π.

1

R

dσ

dT

∂T

∂po
= 0 (19)

1

R

(
dσ

dT

∂T

∂To
− dσo

dTo

)
= 0 (20)

1

R

dσ

dT

∂T

∂π
− 1

ηpol
±1

1

π
= 0 (21)
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Using dσ/dT = cp(T )/T these then give ∂T/∂( ), and also give the remaining p and h
derivatives via the chain rule.

∂T

∂po
= 0 (22)

∂T

∂To
=

cpo
To

T

cp(T )
(23)

∂T

∂π
=

R

π ηpol
±1

T

cp(T )
(24)

∂p

∂po
= π (25)

∂p

∂To
= 0 (26)

∂p

∂π
= po (27)

∂h

∂po
=

dh

dT

∂T

∂po
= 0 (28)

∂h

∂To
=

dh

dT

∂T

∂To
= cp(T )

cpo
To

T

cp(T )
=

cpo
To

T (29)

∂h

∂π
=

dh

dT

∂T

∂π
= cp(T )

R

π

T

cp(T )
=

R

π ηpol
±1
T (30)

3.5 Pure loss prescribed

A pure loss with no work or heat addition is the limiting case of a prescribed pressure ratio
π < 1, with ηpol = 0. The relations above then greatly simplify to the following.

p = po π (31)

T = To (32)

h = ho (33)

3.6 Enthalpy difference prescribed

For prescribed po, To,∆h, ηpol, the new state p, T, h after a compression/expansion process is
computed as follows.

ho = h(To) (34)

σo = σ(To) (35)

cpo = cp(To) (36)

initial guess: T = To + ∆h/cpo (37)

solve: Rh(T ; po, To,∆h) ≡ h(T ) − ho − ∆h = 0 → T (38)

then: p = po exp
(
ηpol

±1 σ(T )− σo
R

)
(39)

h = h(T ) (40)
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The solution for T is via Newton iteration. The overall calculation will be denoted by

{p, T, h, cp, R} = Fh
(
~α, po, To,∆h, ηpol

±1
)

(41)

The function Jacobian derivatives ∂ {p, T, h} /∂ {po, To,∆h} are obtained by first implicitly
differentiating the residual function (38) with respect to the specified po, To,∆h.

dh

dT

∂T

∂po
= 0 (42)

dh

dT

∂T

∂To
− dho

dTo
= 0 (43)

dh

dT

∂T

∂∆h
− 1 = 0 (44)

Using dh/dT = cp(T ) these then give ∂T/∂(), and also give the remaining p and h derivatives
via the chain rule.

∂T

∂po
= 0 (45)

∂T

∂To
=

cpo
cp(T )

(46)

∂T

∂∆h
=

1

cp(T )
(47)

∂p

∂po
=

p

po
+ p

ηpol
±1

R

(
dσ

dT

∂T

∂po

)
=

p

po
(48)

∂p

∂To
= p

ηpol
±1

R

(
dσ

dT

∂T

∂To
− dσo

dTo

)
= p

ηpol
±1

R

(
cp(T )

T
− cpo
To

)
(49)

∂p

∂∆h
= p

ηpol
±1

R

dσ

dT

∂T

∂∆h
= p

ηpol
±1

R

1

T
(50)

∂h

∂po
=

dh

dT

∂T

∂po
= 0 (51)

∂h

∂To
=

dh

dT

∂T

∂To
= cp(T )

cpo
cp(T )

= cpo (52)

∂h

∂∆h
=

dh

dT

∂T

∂∆h
= cp(T )

1

cp(T )
= 1 (53)

3.7 Composition change prescribed

A composition change, such as due to combustion, is specified by the following mass fractions
and input properties, with γi including the effect of the combustor efficiency ηb.

αi constituent i mass fraction for air
βi constituent i mass fraction for fuel vapor
γi constituent i mass fraction change in air due to combustion
To air temperature before combustion
Tfuel fuel vapor temperature before combustion
T temperature after combustion

5



The following quantities are computed:

f̄ fuel/combustor-air mass ratio
λi constituent i mass fraction for combustion products

~ho = hi(To) (54)

~h = hi(T ) (55)

~hfuel = hi(Tfuel) (56)

Defining the combustor air mass flow ṁair ≡ ṁcore−ṁofft, the enthalpy balance across the
combustor is

ṁair ~α · ~ho + ṁfuel
~β · ~hfuel = ṁair ~α · ~h + ṁfuel ~γ · ~h (57)

which is rearranged to give the fuel/air mass ratio.

f̄ ≡ ṁfuel

ṁair

=
~α · ~h − ~α · ~ho
~β · ~hfuel − ~γ · ~h

(58)

The mass fraction vector ~λ of the combustion products is subsequently obtained from the
mass balance across the combustor.

(ṁair + ṁfuel )~λ = ṁair ~α + ṁfuel ~γ (59)

~λ =
~α + f̄~γ

1 + f̄
(60)

The overall combustion-change calculation will be denoted by{
f̄ , ~λ

}
= Fb

(
~α, ~β,~γ, ηb, To, Tfuel, T

)
(61)

The Jacobian derivatives of f̄ and ~λ are obtained by direct differentiation of their definitions
(58) and (60).

∂f̄

∂To
= − ~α · ~cpo

~β · ~hfuel − ~γ · ~h
(62)

∂f̄

∂Tfuel

= −f̄
~β · ~cpfuel

~β · ~hfuel − ~γ · ~h
(63)

∂f̄

∂T
=

~α · ~cp
~β · ~hfuel − ~γ · ~h

(64)

∂~λ

∂f̄
=

~γ − ~λ
1 + f̄

(65)

∂~λ

∂To
=

∂~λ

∂f̄

∂f̄

∂To
(66)

∂~λ

∂Tfuel

=
∂~λ

∂f̄

∂f̄

∂Tfuel

(67)

∂~λ

∂T
=

∂~λ

∂f̄

∂f̄

∂T
(68)
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3.8 Mixing

Mixing between two streams is a simplified version of the combustion case above. No chem-
ical reaction is assumed, so that ~γ = 0. However, in general the two streams will have two
different chemical compositions specified by their mass fraction vectors ~λa and ~λb, two dif-
ferent temperatures Ta and Tb, and two different enthalpies ~ha = hi(Ta) and ~hb = hi(Tb). The
species mass flow balance gives the composition mass fraction vector ~λ of the mixed gas, in
terms of the convenient relative mass fractions fa, fb of the two streams.

fa =
ṁa

ṁa + ṁb

(69)

fb =
ṁb

ṁa + ṁb

(70)

~λ = fa ~λa + fb ~λb (71)

Without any chemical reaction change term, the mixed enthalpy is

~λ · ~h(T ) ≡ hmix = fa ~λa · ~ha + fb ~λb · ~hb (72)

which can be numerically inverted for the mixed temperature T , using the previously-defined
FT function.

Tguess = fa Ta + fb Tb (73)

T = FT
(
~λ, hmix ; Tguess

)
(74)

3.9 Mach number prescribed

For prescribed po, To,Mo,M, ηpol, the new adiabatic-change state p, T, h corresponding to M
is computed as follows.

σo = σ(To) (75)

cpo = cp(To) (76)

ho = h(To) (77)

u2
o = M2

o

cpo Ro

cpo−Ro

To (78)

initial guess: T = To
1 + Ro

2(cpo−Ro)
M2

o

1 + Ro

2(cpo−Ro)
M2

(79)

solve: RM(T ; po, To,Mo,M)

≡ h(T ) +
1

2
M2 cp(T )R

cp(T )−R
T − ho −

1

2
u2
o = 0 → T (80)

then: p = po exp
(
ηpol

±1 σ(T )− σo
R

)
(81)

h = h(T ) (82)

The solution for T is via Newton iteration. The overall calculation will be denoted by

{p, T, h, cp, R} = FM
(
~α, po, To,Mo,M, ηpol

±1
)

(83)

7



The convenient u2 and u2
o derivatives are defined next.

u2 = M2 cp(T )R

cp(T )−R
T (84)

∂u2

∂M
= 2M

cp(T )R

cp(T )−R
T (85)

∂u2

∂T
= M2 R

cp(T )−R

(
cp(T ) − R

cp(T )−R
c′p(T )T

)
(86)

∂u2
o

∂Mo

= 2Mo
cpo Ro

cpo−Ro

To (87)

∂u2
o

∂To
= M2

o

Ro

cpo−Ro

(
cpo −

Ro

cpo−Ro

c′po To

)
(88)

The function Jacobian derivatives ∂ {p, T, h} /∂ {po, To,Mo,M} are then obtained by first
implicitly differentiating (80) with respect to the specified po, To,Mo,M .

dh

dT

∂T

∂po
+

1

2

∂u2

∂T

∂T

∂po
= 0 (89)

dh

dT

∂T

∂To
+

1

2

∂u2

∂T

∂T

∂To
− ∂ho

∂To
− ∂u2

o

∂To
= 0 (90)

dh

dT

∂T

∂Mo

+
1

2

∂u2

∂T

∂T

∂Mo

− ∂u2
o

∂Mo

= 0 (91)

dh

dT

∂T

∂M
+

1

2

∂u2

∂T

∂T

∂M
= 0 (92)

Using dh/dT = cp(T ) these then give ∂T/∂(), and also give the remaining p and h derivatives
via the chain rule.

∂T

∂po
= 0 (93)

∂T

∂To
=

cpo
cp(T )

(94)

∂T

∂∆h
=

1

cp(T )
(95)

∂p

∂po
=

p

po
+ p

ηpol
±1

R

(
dσ

dT

∂T

∂po

)
=

p

po
(96)

∂p

∂To
= p

ηpol
±1

R

(
dσ

dT

∂T

∂To
− dσo

dTo

)
= p

ηpol
±1

R

(
cp(T )

T
− cpo
To

)
(97)

∂p

∂∆h
= p

ηpol
±1

R

dσ

dT

∂T

∂∆h
= p

ηpol
±1

R

1

T
(98)

∂h

∂po
=

dh

dT

∂T

∂po
= 0 (99)

∂h

∂To
=

dh

dT

∂T

∂To
= cp(T )

cpo
cp(T )

= cpo (100)

∂h

∂∆h
=

dh

dT

∂T

∂∆h
= cp(T )

1

cp(T )
= 1 (101)
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3.10 Mass flux prescribed

It is occasionally useful to calculate the static quantities p, T, h corresponding to a specified
stagnation state po, To, ho, and a specified mass flux ρu = ṁ/A ≡ m′. This is computed as
follows, starting from some given initial guess specified by the Mach number Mguess, which
also selects the subsonic or supersonic branch.

σo = σ(To) (102)

ho = h(To) (103)

initial guess: T = To

(
1 +

Ro

2(cpo−Ro)
M2

guess

)−1

(104)

solve: Rm(T ; po, To,m
′) ≡

(
p(T )

RT

)2

2
(
ho − h(T )

)
− (m′)2 = 0 → T (105)

then: p = po exp
(
σ(T )− σo

R

)
(106)

h = h(T ) (107)

The solution for T is via Newton iteration. The overall calculation will be denoted by

{p, T, h, cp, R} = Fm (~α, po, To,m
′ ; Mguess) (108)

This function’s Jacobian derivatives can be calculated by the same procedures used for the
other functions.

4 Turbofan Component Calculations

The assumed turbofan engine configuration is shown in Figure 1. Gas state variables and
velocities are defined or computed at all the numbered locations.

8

6

0

4

m
.

.
mα

πd

πf

πb3

5

4a

πhcπlc ht
lt

4.5
πc

2.5

4.1

πfn
inl

2

1.9

2.1

1.8

1.8

N G/

∆
∆

h
h

4.9

πtn

Nl Nhl

core

core

P

7

m
.
fuel

.
mcool

.
mofft

offt 9

Figure 1: Engine station numbers, mass flows, total-pressure ratios, total-
enthalpy drops, and spool speeds.

Most of the calculations described in this section are common to both the design and the
off-design cases, and assume that the quantities listed in Table 1 are known. The simple
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design case without offtakes and without an inlet boundary layer defect will require only a
single calculation pass, with the core mass flow and component dimensions determined at
the end. In contrast, the design case with offtakes and the off-design case requires multiple
Newton-iteration passes to converge the component pressure ratios and mass flows.

Table 1: Quantities assumed known for subsequent turbofan component com-
putations. Their values are either specified from the flight condition, known as
design-case quantities, or known from a previous iteration.

T0, p0 atmospheric properties
M0 flight Mach number
Tt 4 combustor exit total temperature
πf fan pressure ratio
πlc LPC pressure ratio
πhc HPC pressure ratio
α fan bypass ratio
πd diffuser pressure ratio
πb combustor pressure ratio
πfn fan duct loss pressure ratio
M4a representative Mach number at start of HPT cooling-flow mixing zone
Tm HPT design metal temperature (if fc is to be sized)
fc cooling mass flow fraction (if previously sized)
ṁofft LPC mass flow offtake
Pofft LPC spool power offtake
Kinl inlet kinetic energy defect
ṁcore core mass flow (not needed if offtakes and Kinl are ignored)
( )D specified design-case quantity

4.1 Freestream properties

From the specified freestream static temperature, pressure, and Mach number, T0, p0,M0,
we can obtain the freesteam speed of sound and velocity.

cp0 = cp(T0) (109)

a0 =

√
cp0

cp0−R0

R0T0 (110)

u0 = M0 a0 (111)

4.2 Freestream-stagnation properties

The freestream stagnation quantities are computed using the specified enthalpy change pro-
cedure, with ηpol =1.

∆h = 1
2
u2

0 (112)

{pt 0, Tt 0, ht 0} = Fh (~α, p0, T0,∆h, 1) (113)

The standard fixed-cp relations could also be used here, since the stagnation-static temper-
ature difference is sufficiently small for any non-hypersonic flight Mach number.
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4.3 Fan and compressor quantities

4.3.1 Inlet conditions

The stagnation conditions ( )t 1.8 in the inlet inviscid flow (excluding the inlet BLs) are
computed as the pure-loss case with a diffuser total/total pressure ratio πd.

pt 1.8 = pt 0 πd (114)

Tt 1.8 = Tt 0 (115)

ht 1.8 = ht 0 (116)

Normally πd ' 1, unless an inlet screen or other losses are present upstream.

4.3.2 Fan and LPC inlet conditions

In the case of an ingested boundary layer, the additional total pressure loss at station 2 is de-
fined in terms of the static temperature and pressure profiles T (n), p(n), and the corresponding
entropy profile s(n),

s(n) ≡ ln
(T (n)/Tt 1.8)γ/(γ−1)

p(n)/pt 1.8

= ln
(T (n)/Te)

γ/(γ−1)

p(n)/pe
+ ln

(Te/Tt 1.8)γ/(γ−1)

pe/pt 1.8

(117)

' γ

γ−1
ln
T (n)

Te
(118)

=
γ

γ−1

∆T

Te
+ O

{(
∆T

Te

)2
}

(119)

where Te and pe are the values just outside the boundary layer edge at station 2.

Te = Tt 1.8

(
1 + γ−1

2
M2

2

)−1
(120)

pe = pt 1.8

(
1 + γ−1

2
M2

2

)−γ/(γ−1)
(121)

We’ve assumed that these have the same stagnation state as station 1.8, which made the
second term in equation (117) vanish. To then obtain (118) we’ve also assumed the boundary
layer approximation p/pe ' 1. Finally, equation (119) is a Taylor series for the logarithm in
terms of the fractional temperature defect, which for a uniform total temperature (correct
in a mass-averaged sense), is

∆T (n)

Te
≡ T (n)−Te

Te
=

u2
e − u2

2 cp1.8Te
=

γ−1

2

u2
e − u2

a2
e

(122)

a2
e = (γ−1) cp1.8Te = (γ−1) cp1.8Tt 1.8

(
1 + γ−1

2
M2

2

)−1
(123)

so that the approximate entropy profile (119) simplifies as follows.

s(n) ' γ

2

u2
e − u2

a2
e

(124)
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We now define the corresponding mass-averaged entropy s̄,

ṁmix ≡
∫∫

ρu dAinl (125)

s̄ ≡ 1

ṁmix

∫∫
s ρu dAinl '

Kinl

ṁmix

γ

a2
e

(126)

Kinl ≡
∫∫

1
2

(
u2
e − u2

)
ρu dA (127)

where Kinl is the kinetic energy defect. Possible assumptions for the mixing mass flow are

ṁmix =

{
ṁfan , BL mixes only with the fan flow

ṁfan + ṁcore , BL mixes with entire inlet flow
(128)

ṁfan ' m̄f

√
Tref

Tt 0

pt 0

pref

(129)

ṁcore ' m̄lc

√
Tref

Tt 0

pt 0

pref

(130)

and the fan inlet state at station 2 are then

pt 2 = pt 1.8 exp(−s̄) (131)

Tt 2 = Tt 1.8 (132)

ht 2 = ht 1.8 (133)

and the corresponding LPC inlet state at station 1.9 is

( )t 1.9 =

{
( )t 1.8 , BL mixes only with the fan flow
( )t 2 , BL mixes with entire inlet flow

(134)

The fan and core mass flow approximations (129) and (130) use the freestream total quan-
tities ( )t 0 instead of ( )t 2 and ( )t 1.9 called for by the m̄f and m̄lc definitions. This is done
to avoid making the pt 2 and pt 1.9 definitions above circular, which would then need sub-
iterations to resolve. The physical assumptions inherent in the mix-out state calculation
justify this relatively minor approximation and simplification.

4.3.3 Fan exit conditions

The fan exit stagnation conditions are computed from the fan pressure ratio πf . The poly-
tropic efficiency is computed first using the appropriate assumed fan efficiency map function
Fη given in section 7.2.

ηpolf
=

{
Fη(πf , πf , 1 , 1 ) , (design case)
Fη(πf , πf D , m̄f , m̄f D) , (off-design case)

(135)

{pt 2.1, Tt 2.1, ht 2.1} = Fp
(
~α, pt 2, Tt 2, πf , ηpolf

)
(136)

4.3.4 Fan nozzle exit conditions

Fan duct and fan nozzle losses are represented by the total pressure-drop ratio πfn with no
total enthalpy change.

pt 7 = pt 2.1 πfn (137)

Tt 7 = Tt 2.1 (138)

ht 7 = ht 2.1 (139)
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4.3.5 LPC exit conditions

The LPC calculation is the same as for the fan, but the inlet state is 1.9 and the pressure
ratio and efficiency are of course different.

ηpollc
=

{
Fη(πlc , πlc , 1 , 1 ) , (design case)
Fη(πlc, πlcD , m̄lc, m̄lcD) , (off-design case)

(140)

{pt 2.5, Tt 2.5, ht 2.5} = Fp
(
~α, pt 1.9, Tt 1.9, πlc, ηpollc

)
(141)

4.3.6 HPC exit conditions

The HPC calculation procedure is the same as for the LPC and fan, except that the 2.5
station quantities from the LPC calculation above are used for the HPC inlet.

ηpolhc
=

{
Fη(πhc , πhc , 1 , 1 ) , (design case)
Fη(πhc, πhcD , m̄hc, m̄hcD) , (off-design case)

(142)

{pt 3, Tt 3, ht 3} = Fp
(
~α, pt 2.5, Tt 2.5, πhc, ηpolhc

)
(143)

4.3.7 Fan and compressor efficiencies

The equivalent isentropic states and overall efficiencies can be computed for the fan and
compressors out of interest, although these are not required for any subsequent calculations.

{pt 2.1, (Tt 2.1)is, (ht 2.1)is} = Fp (~α, pt 2, Tt 2, πf , 1) (144)

{pt 2.5, (Tt 2.5)is, (ht 2.5)is} = Fp (~α, pt 1.9, Tt 1.9, πlc, 1) (145)

{pt 3, (Tt 3)is, (ht 3)is} = Fp (~α, pt 2.5, Tt 2.5, πhc, 1) (146)

ηf =
(ht 2.1)is − ht 2

ht 2.1 − ht 2

(147)

ηlc =
(ht 2.5)is − ht 1.9

ht 2.5 − ht 1.9

(148)

ηhc =
(ht 3)is − ht 2.5

ht 3 − ht 2.5

(149)

4.4 Cooling Mass Flow or Metal Temperature Calculations

Cooling-flow calculations consist of either

1) Determination of cooling mass flow ratio (cooling sizing), or
2) Determination of metal temperature (cooling analysis).

It should be noted that the cooling sizing case 1) may be performed for any operating point,
and not necessarily the engine-sizing design point. For example, an engine whose design
sizing case is the cruise condition will typically have its cooling flow ratio sized at the off-
design takeoff condition.

4.4.1 Cooling Mass Flow Ratio Sizing

For the cooling-sizing case, the cooling mass flow fractions ε1, ε2 . . . for the hot-section
blade rows are determined to obtain required blade-row metal temperatures Tm1 , Tm2 . . . as
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described in the document Film Cooling Flow Loss Model. The function has the form

{ε1, ε2, . . .} = Fε (Tt 3, Tt 4, Tm1 , Tm2 . . . ; Mexit,∆Tstreak, StA, θf , η) (150)

where Mexit . . . η are the various parameters in the cooling model. The overall cooling mass
flow is the sum of the individual blade-row cooling mass flows. Since the compressor discharge
is reduced by any compressor mass flow offtake farther upstream, we rescale the blade-row
fractions by (ṁcore−ṁofft)/ṁcore = 1−fo to give the overall cooling flow fraction fc which is
defined relative to the inlet core mass flow.

fo ≡ ṁofft/ṁcore (151)

fc ≡ ṁcool/ṁcore = (1−fo) (ε1 + ε2 + . . .) (152)

4.4.2 Metal Temperature Calculation

In this case the individual blade-row cooling mass flow ratios ε1, ε2 . . . are assumed to be
known. The blade-row metal temperatures can then be determined from the cooling model
relations, which are now recast into the following form.

{Tm1 , Tm2 , . . .} = FTm (Tt 3, Tt 4, ε1, ε2 . . . ; Mexit,∆Tstreak, StA, θf , η) (153)

These metal temperatures are only informative, since they are not required for any subse-
quent calculations.

4.5 Combustor quantities

The engine possibly has cooling air, which is bled from station 3, bypasses the combustor,
and re-enters the flow path in the HPT, as sketched in Figure 1. The mass flow fractions
and control volumes are detailed in Figure 2.
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Figure 2: Combustor and film-cooling flows, with mixing over and downstream
of the IGV. Dashed rectangles are control volumes. Mass flow fractions are
relative to ṁcore, upstream of the mass offtake fraction fo bleed location.

Using control volume A in Figure 2, the fuel/combustor-air mass flow fraction

f̄ ≡ ṁfuel

ṁair

=
ṁfuel

ṁcore−ṁofft−ṁcool

=
ff

1−fo−fc

(154)

and the combustion-product constituent mass fraction vector ~λ are obtained by using the
compressor exit condition ( )t 3, together with the specified combustor exit total temperature
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Tt 4. The fuel/core-air fraction ff then follows by rescaling f̄ by the combustor-air/core-air
mass flow ratio 1−fo−fc. {

f̄ , ~λ
}

= Fb
(
~α, ~β,~γ, ηb, Tt 3, Tt f , Tt 4

)
(155)

ff = (1−fo−fc) f̄ (156)

The combustor exit conditions are then obtained using this ~λ, together with the specified
Tt 4 and the assumed combustor pressure ratio πb.

ht 4 = ~λ · ~h(Tt 4) (157)

σt 4 = ~λ · ~σ(Tt 4) (158)

pt 4 = pt 3 πb (159)

The heat release from the combustion is implicitly determined by the ~λ vector computed
by the combustor function (155), together with the resulting enthalpy ht 4 defined by equa-
tion (157). The implied effective heating value of the fuel, which can be defined as

cp 3 = αi · ~cp(Tt 3) (160)

cp 4 = λi · ~cp(Tt 4) (161)

hfuel =
cp 3+cp 4

2

Tt 4−Tt 3 + f̄ (Tt 4−Tt f)

ηb f̄
(162)

is informative, although it should be noted that hfuel is not used in any calculations. It also
must not be confused with the fuel constituent enthalpy vector ~hfuel.

4.6 Station 4.1 without IGV Cooling Flow

Without cooling flow (fc = 0), the 4.1 station quantities and constituent mass fraction at
the first turbine rotor inlet are the same as the 4 station quantities at the combustor exit.

Tt 4.1 = Tt 4 (163)

pt 4.1 = pt 4 (164)

~λ′ = ~λ (165)

The analysis can then skip the cooling flow mixing calculations below, and proceed directly
to the Turbine Quantities section.

4.7 Station 4.1 with IGV Cooling Flow

The IGV pressure at the cooling flow exit is specified indirectly via the cooling-exit Mach
M4a at the combustor-exit stagnation conditions. The corresponding static conditions and
velocity are calculated using the FM function.

{ p4a, T4a, h4a } = FM
(
~λ, pt 4, Tt 4, 0,M4a, 1

)
(166)

u4a =
√

2 (ht 4 − h4a) (167)
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The cooling flow is assumed to exit the IGV at some fraction ruc of this u4a.

uc = ruc u4a (168)

The combustor and cooling flows are assumed to be fully mixed at station 4.1. The mixed-out
mass fraction vector ~λ′ is calculated by the mass flow balance,

~λ′ =
1− fo − fc + ff

1− fo + ff

~λ +
fc

1− fo + ff

~α (169)

and is used for the downstream turbine and core exhaust calculations. Assuming a constant
static pressure over the mixing region, a streamwise momentum balance gives the mixed-out
velocity u4.1.

p4.1 = p4a (170)

u4.1 =
1− fo − fc + ff

1− fo + ff

u4a +
fc

1− fo + ff

uc (171)

The enthalpy balance across control volume B in Figure 2 gives the mixed-out total temper-
ature Tt 4.1 via the Fh function.

h(Tt 4.1) ≡ ht 4.1 =
1− fo − fc + ff

1− fo + ff

ht 4 +
fc

1− fo + ff

ht 3 (172)

Tguess =
1− fo − fc + ff

1− fo + ff

Tt 4 +
fc

1− fo + ff

Tt 3 (173)

Tt 4.1 = FT
(
~λ′, ht 4.1 ; Tguess

)
(174)

The total pressure is then obtained using the mixed-out velocity u4.1, together with the Fh
function.

h4.1 = ht 4.1 − 1
2
u2

4.1 (175)

∆h = 1
2
u2

4.1 (176)

{ pt 4.1, Tt 4.1, ht 4.1 } = Fh
(
~λ′, p4.1, T4.1,∆h, 1

)
(177)

4.8 Turbine quantities

4.8.1 High Pressure Turbine

The HPT enthalpy drop is obtained by equating the windage and friction-loss discounted
turbine work with the HPC work.

(ṁcore−ṁofft+ṁfuel) (ht 4.1 − ht 4.5) (1−εh) = (ṁcore−ṁofft) (ht 3 − ht 2.5) (178)

∆hht ≡ ht 4.5 − ht 4.1 (179)

=
−(1−fo)

1− fo+ff

[
ht 3 − ht 2.5

]
1

1−εh
(180)

This enthalpy drop, together with an assumed polytropic efficiency, is then used to determine
the HPT exit stagnation conditions.

{pt 4.5, Tt 4.5, ht 4.5} = Fh
(
~λ′, pt 4.1, Tt 4.1,∆hht, ηpolht

−1
)

(181)
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4.8.2 Low Pressure Turbine (Design case)

The LPT enthalpy drop for the design case is obtained by equating the windage friction-loss
discounted turbine work with the LPC plus fan work, plus any shaft power offtake.

(ṁcore−ṁofft+ṁfuel) (ht 4.5−ht 4.9) (1−ε l)

= ṁcore (ht 2.5−ht 1.9) + ṁfan (ht 2.1−ht 2) + Pofft (182)

∆hlt ≡ ht 4.9 − ht 4.5 (183)

=
−1

1− fo+ff

[
(ht 2.5−ht 1.9) + α (ht 2.1−ht 2) +

Pofft

ṁcore

]
1

1−ε l

(184)

The enthalpy drop calculated above, together with an assumed turbine polytropic efficiency,
is then used to determine all the station 4.9 LPT exit conditions. The turbine nozzle total
pressure ratio πtn then give the station 5 nozzle conditions.

{pt 4.9, Tt 4.9, ht 4.9} = Fh
(
~λ′, pt 4.5, Tt 4.5,∆hlt, ηpollt

−1
)

(185)

pt 5 = pt 4.9 πtn (186)

Tt 5 = Tt 4.9 (187)

ht 5 = ht 4.9 (188)

4.8.3 Low Pressure Turbine (Off-Design case)

The relations above could be used to determine the ( )t 5 core exit quantities for the off-
design case. However, this opens the possibility of pt 5 falling below the nozzle static pressure
p5 = p0 after any one Newton iteration. A common cause is the fan’s enthalpy extraction
term α(ht 2.1−ht 2) in (184) being too large because of a momentarily excessive πf and/or m̄f

values, so that ∆hlt is too negative which gives a small pt 5 in calculations (185) and (186).

Regardless of the cause, if pt 5 < p5 is a result then the nozzle velocity u5 cannot be computed,
and the subsequent nozzle mass flow and thrust relations cannot be imposed. This causes
failure of the overall Newton iteration process. One solution is to underrelax an “excessive”
Newton update so that pt 5 never falls below p5. However, this is rather impractical since a
very long calculation chain is required to reach the pt 5 evaluation operations (185) and (186),
so the necessary underrelaxation factor cannot be determined without in effect performing
and possibly discarding the calculations for one whole Newton iteration.

The solution taken here is to introduce pt 5 as a Newton variable, so that during the Newton
update it can be easily monitored to ensure that it never falls below p5. It also means that
the ( )t 5 quantities are now computed by the alternative procedure of a specified pressure
ratio as used for the compressors.

πlt =
pt 4.9

pt 4.5

=
1

πtn

pt 5

pt 4.5

(189)

{pt 4.9, Tt 4.9, ht 4.9} = Fp
(
~λ′, pt 4.5, Tt 4.5, πlt, ηpollt

−1
)

(190)

pt 5 = pt 4.9 πtn (191)

Tt 5 = Tt 4.9 (192)

ht 5 = ht 4.9 (193)
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The LPT work relation (184) will now play the role as a Newton-system equation which con-
strains pt 5. This overall procedure will produce the same final result as if pt 5 was calculated
from (184), but its Newton iteration behavior is far more stable and reliable.

4.8.4 Turbine efficiencies

The turbine efficiencies (including cooling-air losses) can also be computed out of interest.

{pt 4.5, (Tt 4.5)is, (ht 4.5)is} = Fp
(
~λ′, pt 4, Tt 4, pt 4.5/pt 4, 1

)
(194)

{pt 4.9, (Tt 4.9)is, (ht 4.9)is} = Fp
(
~λ′, pt 4.5, Tt 4.5, pt 5/pt 4.5, 1

)
(195)

ηht =
ht 4.5 − ht 4

(ht 4.5)is − ht 4

(196)

ηlt =
ht 4.9 − ht 4.5

(ht 4.9)is − ht 4.5

(197)

4.9 Fan exhaust quantities

The fan exhaust velocity is computed from the known ( )t 8 fan plume stagnation conditions,
and the requirement of ambient exhaust pressure, p8 = p0.

pt 8 = pt 7 (198)

Tt 8 = Tt 7 (199)

{p8, T8, h8} = Fp (~α, pt 8, Tt 8, p0/pt 8, 1) (200)

u8 =
√

2 (ht 8 − h8) (201)

4.10 Core exhaust quantities

The core exhaust velocity is computed from the known ( )t 6 core plume conditions and the
requirement of ambient exhaust pressure, p6 = p0.

pt 6 = pt 5 (202)

Tt 6 = Tt 5 (203)

{p6, T6, h6} = Fp
(
~λ′, pt 6, Tt 6, p0/pt 6, 1

)
(204)

u6 =
√

2 (ht 6 − h6) (205)

4.11 Offtake air exhaust quantities

The offtake air is assumed to have known Tt 9 and pt 9 at its discharge nozzle. These are used
to compute the discharge flow’s velocity u9 immediately downstream of the nozzle where it
reaches ambient pressure p0. The usual constant–cp relations are sufficient here.

u9 =
√

2 cpTt 9 [1− (p0/pt 9)(γ−1)/γ] (206)
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4.12 Overall engine quantities

The net aircraft mass outflow, mechanical flow power, and jet dissipation are defined as

ṁ ≡ ©
∫∫

ρV · n̂ dS (207)

PKinl
+ PKexit

≡ ©
∫∫ [

p− p∞ + 1
2
ρ
(
V 2−V 2

∞

)]
V · n̂ dS (208)

Φjet = Ėjet ≡ ©
∫∫ [

(p−p∞)(V−V∞) · n̂ + 1
2
ρ |V−V∞|2 V · n̂

]
dS (209)

PVinl ≡
∫∫∫

(p−p∞)∇ ·V dVinl (210)

Φinl ≡
∫∫∫

(¯̄τ · ∇) ·V dVinl (211)

Φcc ≡
∫∫∫

(¯̄τ · ∇) ·V dVcc (212)

where the surface integrals are taken over the propulsor outlet and inlet, and also over the
offtake air discharge port, with the unit normal n̂ pointing outward. The volume integrals are
taken over the inlet streamtube volume Vinl, and the core-cowl surface dissipation integral
is taken over the fan exhaust streamtube volume Vcc over the exposed core cowl (if any)
downstream of the fan nozzle.

In terms of the 1D engine flow quantities, and the assumption p6 = p8 = p9 = p0, these
evaluate to

ṁ = ff ṁcore (213)

PKexit
= 1

2

[
(1−fo+ff)

(
u2

6 − u2
0

)
+ α

(
u2

8 − u2
0

)
+ fo

(
u2

9 − u2
0

) ]
ṁcore (214)

Φjet = 1
2

[
(1−fo+ff)

(
u6 − u0

)2
+ α

(
u8 − u0

)2
+ fo

(
u9 − u0

)2 ]
ṁcore (215)

PKinl
+ PVinl = Φinl (216)

where we set V∞ = u0 and p∞ = p0 to use the present terminology.

The net propulsive power is defined and evaluated as

Pprop ≡ PKinl
+ PVinl + PKexit

− Φjet + ṁV 2
∞

=
[
(1−fo+ff)u6 − u0 + α (u8 − u0) + fo u9

]
ṁcore u0 + Φinl (217)

where the first term in (217) is recognized as the isolated-engine net thrust power, and Φinl

acts as an effective added thrust power from the ingested boundary layer. A net effective
thrust can then be defined and decomposed into components as follows.

F ≡ Pprop/u0 = F6 + F8 + F9 + Finl (218)

F6 ≡
[
(1−fo+ff)u6 − u0

]
ṁcore (219)

F8 ≡ α (u8 − u0) ṁcore (220)

F9 ≡ fo u9 ṁcore (221)

Finl ≡ Φinl/u0 (222)

In terms of the inlet kinetic energy defect the dissipation is

Φinl '
1 + γ−1

2
M2

inl

(1 + γ−1
2
M2)avg surf

Kinl (223)

19



which is the same as Kinl in low speed flow.

The overall specific power and specific thrust, defined here as

Psp ≡
Pprop

(1+α) ṁcore u2
0

(224)

Fsp ≡
F

(1+α) ṁcore u0

(225)

are seen to be equal, and evaluate to

Psp = Fsp =
(1−fo+ff)u6 − u0 + α(u8−u0) + fo u9

(1+α)u0

+
Φinl

(1+α) ṁcore u2
0

(226)

while Kerrebrock [1] defines an alternative specific thrust using the speed of sound.

F ′sp ≡
F

(1+α) ṁcore a0

= M0 Fsp (227)

The overall specific impulse and thrust specific fuel consumption then also follow.

Isp ≡
F

ṁfuel g
=

Fsp

ff

u0

g
(1+α) =

F ′sp
ff

a0

g
(1+α) (228)

TSFC =
1

Isp

(229)

5 Design Sizing Calculation

For the design case, the following quantities are specified in addition to those in Table 1.

PD design net propulsive power
M2D fan-face, LPC-face axial Mach number
M2.5D HPC-face axial Mach number

For a BLI configuration, the design net propulsive power is equal to the overall dissipation
of the airframe (exludes jet dissipation), plus the added power due any specified climb rate
ḣ and aircraft weight W . These can also define an equivalent design net thrust.

PD = Φsurf + Φwake + Φvortex + Wḣ (230)

FD ≡ PD/u0 (231)

5.1 Mass Flow Sizing

This consists of finding the core mass flow to achieve the required net propulsive power (or
equivalent net thrust) at the design operating conditions p0, a0,M0. This design core mass
flow ṁcoreD is obtained directly from relation (226), using the specified design equivalent
thrust FD.

ṁcoreD =
FD − Finl

(1−fo+ff)u6 − u0 + α(u8−u0) + fo u9

(232)
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5.2 Component Area Sizing

5.2.1 Inlet areas

The fan-face static ρ2 and a2 are obtained from the specified-Mach procedure, with some
specified design fan-face Mach number M2D, with a total pressure defined in terms of the
inlet recovery ratio πd and any BLI entropy rise s̄ defined by (126).

pt 2 = pt 1.8 exp(−s̄) = pt 0 πd exp(−s̄) (233)

Tt 2 = Tt 0 (234)

{p2, T2, h2, cp2 , R2} = FM (~α, pt 2, Tt 2, 0,M2D, 1) (235)

The same calculation is performed for the LPC inlet state.

{p1.9, T1.9, h1.9, cp1.9 , R1.9} = FM (~α, pt 1.9, Tt 1.9, 0,M2D, 1) (236)

The overall fan+LPC area A2 is then computed from the design bypass and core mass flows.

ρ2 =
p2

R2T2

(237)

u2 =
√

2 (ht 2−h2) (238)

ρ1.9 =
p1.9

R1.9T1.9

(239)

u1.9 =
√

2 (ht 1.9−h1.9) (240)

A2 = α
ṁcoreD

ρ2 u2

+
ṁcoreD

ρ1.9 u1.9

(241)

A specified hub/tip ratio HTRf then also gives the fan diameter,

df =

√
4

π

A2

1−HTR2
f

(242)

although this is not required for any subsequent off-design analysis.

The HP compressor fan areaA2.5 is obtained in this same manner from a specified compressor-
face Mach number M2.5D.

{p2.5, T2.5, cp2.5 , R2.5} = FM (~α, pt 2.5, Tt 2.5, 0,M2.5D, 1) (243)

ρ2.5 =
p2.5

R2.5T2.5

(244)

u2.5 = M2.5D

√
cp2.5 R2.5

cp2.5−R2.5

T2.5 (245)

A2.5 = (1−fo)
ṁcoreD

ρ2.5 u2.5

(246)

A specified hub/tip ratio HTRhc then also gives the HPC face diameter.

dhc =

√
4

π

A2.5

1−HTR2
hc

(247)
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5.2.2 Fan nozzle area

The fan nozzle flow type can be determined from the fan-plume Mach number.

M8 = u8/

√
cp8 R8

cp8−R8

T8 (248)

If M8 < 1 then the fan nozzle is assumed to be unchoked, and the nozzle conditions are
obtained by using the specified pressure ratio function. The nozzle is assumed here to be at
ambient static pressure, although any other pressure can be specified instead.

p7 = p0 (249)

{p7, T7, h7} = Fp (~α, pt 7, Tt 7, p7/pt 7, 1) (250)

If M8 ≥ 1 then the fan nozzle is choked, and the nozzle conditions are obtained using the
specified Mach function.

M7 = 1 (251)

{p7, T7, h7} = FM (~α, pt 7, Tt 7, 0,M7, 1) (252)

In either case, the fan nozzle area follows directly.

u7 =
√

2 (ht 7 − h7) (253)

ρ7 =
p7

R7T7

(254)

A7 = α
ṁcoreD

ρ7 u7

(255)

5.2.3 Core nozzle area

The core nozzle flow type is determined from the core-plume Mach number.

M6 = u6/

√
cp6 R6

cp6−R6

T6 (256)

If M6<1 then the core nozzle is unchoked, and the nozzle conditions are obtained by using
the specified pressure ratio function.

p5 = p0 (257)

{p5, T5, h5} = Fp (~α, pt 5, Tt 5, p5/pt 5, 1) (258)

If M6 ≥ 1 then the fan nozzle is choked, and the nozzle conditions are obtained using the
specified Mach function.

M5 = 1 (259)

{p5, T5, h5} = FM (~α, pt 5, Tt 5, 0,M5, 1) (260)

The core nozzle area follows.

u5 =
√

2 (ht 5 − h5) (261)

ρ5 =
p5

R5T5

(262)

A5 = (1−fo+ff)
ṁcoreD

ρ5 u5

(263)
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5.2.4 Offtake air nozzle area

The offtake air density can be computed from the usual constant–cp relations. The offtake
air discharge nozzle area then follows.

p9 = p0 (264)

T9 = Tt 9 (p9/pt 9)(γ−1)/γ (265)

ρ9 =
p9

R0T9

(266)

A9 = fo
ṁcoreD

ρ9 u9

(267)

5.3 Design corrected speeds and mass flows

Since only speed ratios will be considered in the off-design calculation, the LPC and HPC
design spool speeds can be arbitrarily set to unity.

NlD = 1 (268)

NhD = 1 (269)

The design corrected spool speeds and design corrected mass flows are defined in the usual
manner.

N̄lD = NlD
1√

Tt 1.9/Tref

(270)

N̄hD = NhD
1√

Tt 2.5/Tref

(271)

m̄f D = α ṁcoreD

√
Tt 2/Tref

pt 2/pref

(272)

m̄lcD = ṁcoreD

√
Tt 1.9/Tref

pt 1.9/pref

(273)

m̄hcD = (1−fo) ṁcoreD

√
Tt 2.5/Tref

pt 2.5/pref

(274)

m̄htD = (1−fo+ff) ṁcoreD

√
Tt 4.1/Tref

pt 4.1/pref

(275)

m̄ltD = (1−fo+ff) ṁcoreD

√
Tt 4.5/Tref

pt 4.5/pref

(276)

6 Off-Design Operation Calculation

For an off-design case, the following eight quantities which were assumed known at the start
of the calculation pass are really unknowns, and must be updated.
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πf fan pressure ratio
πlc LPC pressure ratio
πhc HPC pressure ratio

m̄f fan corrected mass flow ≡ α ṁcore

√
Tt 2 /Tref pref/pt 2

m̄lc LPC corrected mass flow ≡ ṁcore

√
Tt 1.9/Tref pref/pt 1.9

m̄hc HPC corrected mass flow ≡ (1−fo)ṁcore

√
Tt 2.5/Tref pref/pt 2.5

Tt 4 combustor exit total temperature
pt 5 core nozzle total pressure

The necessary eight constraining equations involve the spool speeds, which are calculated
as described in the next section. The speed calculation is based on an assumed fan or
compressor map, and has the following functional form.

N̄ = FN(π , m̄ ; πD , m̄D) (277)

This is used to compute the fan, LPC, and HPC speed from each component’s current
pressure ratio and corrected mass flows. The current station 1.9, 2, 2.5 stagnation conditions
are also used, to compute the necessary m̄ arguments for the FN functions.

Nf =
√
Tt 2/Tref FN(πf , m̄f ; πf D , m̄f D) (278)

Nl =
√
Tt 1.9/Tref FN(πlc , m̄lc ; πlcD , m̄lcD) (279)

Nh =
√
Tt 2.5/Tref FN(πhc , m̄hc ; πhcD , m̄hcD) (280)

Each of these three functions uses the appropriate map constants for that component, given
in the component-map section.

The off-design fan face Mach number M2 can be calculated from the fan-face mass flow
relation.

ρ2u2A2 = m̄f

√
Tref

Tt 2

pt 2

pref

+ m̄lc

√
Tref

Tt 1.9

pt 1.9

pref

= (1+α) ṁcore (281)

This is solved for the implied M2 using the station 2 specified mass/area m′ and stagnation
quantities in the Fm function. The design M2 value is a suitable initial guess, and also
specifies the subsonic branch.

Mguess = M2D (282)

m′ = (1+α) ṁcore/A2 (283)

{p2, T2, h2} = Fm (~α, pt 2, Tt 2, ht 2,m
′ ; Mguess) (284)

u2 =
√

2 (ht 2 − h2) (285)

M2 = u2/

√
cp2 R2

cp2−R2

T2 (286)

6.1 Constraint residuals

The eight residuals for constraining the eight operating unknowns are listed below.
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6.1.1 Fan/LPC speed constraint

Equating the fan and LPC speeds, with some specified gear ratio Gf , defines the constraining
equation residual.

R1 ≡ Nf Gf − Nl = 0 (287)

6.1.2 HPT mass flow

In lieu of a full turbine map, it is reasonable to assume that the high-pressure turbine IGV
is always choked. The appropriate constraining residual is therefore a fixed corrected mass
flow at station 4.1 (conveniently defined in terms of the LPC corrected mass flow variable
m̄lc and the offtake and fuel fractions), set equal to the design value.

m̄ht = (1−fo+ff) m̄lc

√
Tt 4.1

Tt 1.9

pt 1.9

pt 4.1

(288)

R2 ≡ m̄ht − m̄htD = 0 (289)

Note that this approximation means that the high spool speed Nh is not required in any of
the calculations.

6.1.3 LPT mass flow

The low-pressure turbine IGV is also assumed to be choked. Again, the constraining residual
is a fixed corrected mass flow at station 4.5, equal to the design value.

m̄lt = (1−fo+ff) m̄lc

√
Tt 4.5

Tt 1.9

pt 1.9

pt 4.5

(290)

R3 ≡ m̄lt − m̄ltD = 0 (291)

6.1.4 Fan nozzle mass flow

The type of constraint imposed at the fan nozzle depends on whether or not the nozzle is
choked. The fan nozzle trial static conditions and trial Mach number M̃7 are first computed
assuming a specified nozzle static pressure, equal to the freestream pressure.

p̃7 = p0 (292){
p̃7, T̃7, h̃7

}
= Fp (~α, pt 7, Tt 7, p7/pt 7, 1) (293)

ũ7 =
√

2 (ht 7 − h̃7) (294)

M̃7 = ũ7/

√
c̃p7 R7

c̃p7−R7

T̃7 (295)

If M̃7≤1, then the trial state is the actual state.

p7 = p̃7 (296)

T7 = T̃7 (297)

h7 = h̃7 (298)
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If M̃7>1, then the trial state is incorrect, and a unity Mach number is imposed instead.

M7 = 1 (299)

{p7, T7, h7} = FM (~α, pt 7, Tt 7, 0,M7, 1) (300)

For either case, the velocity, density, and mass flow constraint residual is formulated the
same way.

u7 =
√

2 (ht 7 − h7) (301)

ρ7 =
p7

R7T7

(302)

R4 ≡ m̄f

√
Tref

Tt 2

pt 2

pref

− ρ7u7A7 = 0 (303)

6.1.5 Core nozzle mass flow

The type of constraint imposed at the core nozzle depends on whether or not the nozzle is
choked. The core nozzle trial static conditions and trial Mach number M̃5 are first computed
assuming a specified nozzle static pressure, equal to the freestream pressure.

p̃5 = p0 (304){
p̃5, T̃5, h̃5

}
= Fp (~α, pt 5, Tt 5, p5/pt 5, 1) (305)

ũ5 =
√

2 (ht 5 − h̃5) (306)

M̃5 = ũ5/

√
c̃p5 R5

c̃p5−R5

T̃5 (307)

If M̃5≤1, then the trial state is the actual state.

p5 = p̃5 (308)

T5 = T̃5 (309)

h5 = h̃5 (310)

If M̃5>1, then the trial state is incorrect, and a unity Mach number is imposed instead.

M5 = 1 (311)

{p5, T5, h5} = FM (~α, pt 5, Tt 5, 0,M5, 1) (312)

For either case, the velocity, density, and mass flow constraint residual is formulated the
same way.

u5 =
√

2 (ht 5 − h5) (313)

ρ5 =
p5

R5T5

(314)

R5 ≡ (1−fo+ff) m̄lc

√
Tref

Tt 1.9

pt 1.9

pref

− ρ5u5A5 = 0 (315)

26



6.1.6 LPC/HPC mass flow constraint

Equating the LPC and HPC mass flows, with allowance for any bleed mass flow offtake,
defines the sixth constraining equation residual.

R6 ≡ m̄lc

√
Tref

Tt 1.9

pt 1.9

pref

− m̄hc

√
Tref

Tt 2.5

pt 2.5

pref

− ṁofft = 0 (316)

6.1.7 Combustor exit temperature constraint

One of two possible constraints on Tt 4 can be used.

R7 ≡ Tt 4 − (Tt 4)spec = 0 (Tt 4 specified) (317)

R7 ≡ F − Fspec = 0 (thrust specified) (318)

The thrust F is defined by relation (218), and is ultimately a function of the eight Newton
variables.

6.1.8 Core exit total pressure constraint

The constraint on pt 5 is obtained from the LPT work relations (184) and (185), which have
not been used yet for the off-design case.

ṁofft

ṁcore

≡ fo =
ṁofft

m̄lc

√
Tt 1.9

Tref

pref

pt 1.9

(319)

Pofft

ṁcore

≡ Po =
Pofft

m̄lc

√
Tt 1.9

Tref

pref

pt 1.9

(320)

ṁfan

ṁcore

≡ α =
m̄f

m̄lc

√
Tt 1.9

Tt 2

pt 2

pt 1.9

(321)

∆hlt =
−1

1−fo+ff

[
(ht 2.5 − ht 1.9) + α (ht 2.1 − ht 2) + Po

]
1

1−ε l

(322)

pt 4.9 = Fh
(
~λ′, pt 4.5, Tt 4.5,∆hlt, ηpollt

−1
)

(323)

R8 ≡ pt 5 − pt 4.9 πtn = 0 (324)

6.1.9 Inlet Mach number constraint

The off-design inlet Mach number is implicitly constrained by the fan-face mass flow rela-
tion (241) used to size the fan area, but with A2 now held fixed.

{p2, T2, h2} = FM (~α, pt 2, Tt 2, 0,M2, 1) (325)

ρ2 =
p2

R2T2

(326)

u2 =
√

2 (ht 2−h2) (327)

{p1.9, T1.9, h1.9} = FM (~α, pt 1.9, Tt 1.9, 0,M2, 1) (328)

ρ1.9 =
p1.9

R1.9T1.9

(329)

u1.9 =
√

2 (ht 1.9−h1.9) (330)

27



R9 ≡ m̄f

√
Tref

Tt 2

pt 2

pref

1

ρ2u2

+ m̄lc

√
Tref

Tt 1.9

pt 1.9

pref

1

ρ1.9u1.9

− A2 = 0 (331)

6.2 Newton update

The nine residuals depend explicitly or implicitly on the nine unknowns. Newton changes
are computed by forming and solving the 9× 9 linear Newton system.

∂(R1,R2,R3,R4,R5,R6,R7,R8,R9)

∂(πf , πlc, πhc, m̄f , m̄lc, m̄hc, Tt 4, pt 5,M2)





δπf

δπlc

δπhc

δm̄f

δm̄lc

δm̄hc

δTt 4

δpt 5

δM2



= −



R1

R2

R3

R4

R5

R6

R7

R8

R9



(332)

The Newton changes are then used to update the variables,

πf

πlc

πhc

m̄f

m̄lc

m̄hc

Tt 4

pt 5

M2



←



πf

πlc

πhc

m̄f

m̄lc

m̄hc

Tt 4

pt 5

M2



+ ω



δπf

δπlc

δπhc

δm̄f

δm̄lc

δm̄hc

δTt 4

δpt 5

δM2



(333)

where ω ≤ 1 is possible underrelaxation factor set so that the resulting new variables stay
within physically-dictated limits, e.g. π > 1, pt 5 >p0, M2 < 1, etc. This is usually required
only for the first few iterations where the Newton changes are large. Once the solution is
approached and the changes become small, ω = 1 is used.

After the update, all calculations are repeated for the next Newton iteration. Typically, 4–10
iterations are required for convergence to machine zero.

7 Fan and Compressor Maps

To enforce the fan/compressor speed matching requirement, the fan and compressor speeds
are determined from their pressure ratios and mass flows. Also, it is desirable to obtain
realistic degraded efficiencies away from the design point. These are implemented here using
approximate canonincal compressor pressure-ratio maps and efficiency maps.
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7.1 Pressure ratio map

The corrected speed and mass flow is defined in the usual way,

N̄ = N
1√

Tti/Tref

(334)

m̄ = ṁ

√
Tti/Tref

pti/pref

(335)

where Tti, pti are the face quantities, either Tt 2, pt 2 for the fan and the LPC, or Tt 2.5, pt 2.5

for the HPC.

The fan and compressor maps are in turn defined in terms of these corrected values normal-
ized by their design values.

p̃ =
π − 1

πD − 1
(336)

m̃ =
m̄

m̄D

(337)

Ñ =
N̄

N̄D

(338)

The “spine” p̃s(m̃s) on which the speed lines are threaded is parameterized by the corrected
speed in the form

m̃s(Ñ) = Ñ b (339)

p̃s(Ñ) = m̃a
s = Ñab (340)

where a controls the shape of the spine, and b controls the positioning of the speed lines
along the spine.

The “knee” shape of each speed line is assumed to be a simple logarithmic function, translated
to the m̃s, p̃s position along the spine.

p̃− p̃s = 2Ñ k ln
(

1− m̃− m̃s

k

)
(341)

The constant k controls the sharpness of the logarithmic knee. Function (341) can be recast
into an explicit form of a usual compressor map.

π
(
m̄, N̄

)
= 1 + (πD − 1)

[
Ñab + 2Ñ k ln

(
1− m̃− Ñ b

k

)]
(342)

Equation (342) is actually used here in inverse form, giving the fan or compressor corrected
speed as a function of the pressure ratio and corrected mass flow.

N̄ = FN (π, πD, m̄, m̄D) (343)

This is implemented by inverting the map (341) using the Newton method. To avoid prob-
lems with the extremely nonlinear logarithmic shape of each speed line curve, the Newton
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residual of (342) is formulated in one of two equivalent ways, depending on whether the
specified m̃, p̃ point is above or below the spine curve (see Figure 3).

R(Ñ) = p̃s(Ñ) + 2Ñ k ln
(

1− m̃− m̃s(Ñ)

k

)
− p̃ (if p̃ ≥ m̃a) (344)

R(Ñ) = m̃s(Ñ) + k
[
1 − exp

(
p̃− p̃s(Ñ)

2Ñk

)]
− m̃ (if p̃ < m̃a) (345)

Residual (344), used above the spine curve, drives to the intersection of a speed line curve
with a vertical constant-m̃ line. Residual (345), used below the spine curve, drives to the in-
tersection of a speed line curve with a horizontal constant-p̃ line. In each case the intersection
is nearly orthogonal, giving an extremely stable Newton iteration with rapid convergence in
all cases.

7.2 Polytropic efficiency

The polytropic efficiency function is assumed to have the following form.

ηpol = Fη(π, πD, m̄, m̄D) ≡ ηpolo

[
1 − C

∣∣∣∣ p̃

m̃a+∆a−1
− m̃

∣∣∣∣c − D
∣∣∣∣ m̃m̃o

− 1
∣∣∣∣d
]

(346)

The maximum efficiency is ηpolo , located at m̃ = m̃o and p̃ = m̃(a+∆a)
o along the spine of

the efficiency map. The exponent of the spine is a + ∆a, which differs from the exponent
of the pressure-map spine by the small amount ∆a. Typically, ∆a is slightly negative for
single-stage fans, and slightly positive for multi-stage compressors. The c, d, C,D constants
control the decrease of ηpol as m̃, p̃ move away from the m̃o, p̃o point.

7.3 Map calibration

The constants in Table 2 give a realistic fan map, which is compared to the E3 fan data.
The resulting pressure-ratio contours are shown in Figure 3, along with experimental data.

Table 2: Pressure-ratio-map and efficiency-map constants for the E3 fan.

πD a b k ηpolo m̃o ∆a c d C D

1.7 3.0 0.85 0.03 0.90 0.75 −0.5 3 6 2.5 15.0

The efficiency contours are shown in Figure 4.

The constants in Table 3 give a realistic high-pressure compressor map, which is compared
to the E3 compressor data. The resulting pressure-ratio contours are shown in Figure 5,
along with experimental data. The efficiency contours are shown in Figure 6.
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Table 3: Pressure-ratio-map and efficiency-map constants for the E3 compressor.

πD a b k ηpolo m̃o ∆a c d C D

26.0 1.5 5 0.03 0.887 0.80 0.5 3 4 15.0 1.0
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Figure 3: Pressure ratio versus normalized corrected mass flow and corrected speed, for E3

fan. Each red line is equation (342) with E3 fan-model constants in Table 2, and a specified
experimental N̄ value. Blue lines with symbols are measured data. Single black line is the
“spine” curve p̃ = m̃a.
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Figure 4: Polytropic efficiency contours versus corrected mass flow and pressure ratio for E3

fan. Red lines are isocontours of equation (346) with E3 fan-model constants in Table 2.
Cyan lines with symbols are measured data. Single black line is the “spine” curve p̃ = m̃a+∆a.
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Figure 5: Pressure ratio versus normalized corrected mass flow and corrected speed for E3

compressor. Blue lines with symbols are measured data.
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Figure 6: Polytropic efficiency contours versus corrected mass flow and pressure ratio for
E3 compressor, for compressor-model constants in Table 3. Cyan lines with symbols are
measured data.
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