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Nomenclature

b, weight-model exponents P, weight-model constants {b,, , W}

W,  weight-model coefficients F least-squares penalty function

w bare weight function Ry residual vector (= 0F/0Py)

m core mass flow at standard conditions Jy;,  Jacobian matrix (= ORy/0F))

« bypass ratio (BPR) (); engine-model index

To overall pressure ratio (OPR) ()  weight-model constant index

1 Assumed bare weight form

The dry bare weight of a turbofan engine is assumed to depend on the primary engine
parameters as follows.
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P, are the six data-fit constants to be determined.

The form (1) is constructed so that W, captures the basic weight of the core, W, captures
the added weight which scales with the overall pressure ratio (core length, casing weight,
etc), and W, captures the added weight which scales with the bypass ratio which quantifies
the frontal area. W, also includes the weight of the low-pressure turbine which drives the
fan, and the shaft, bearings, etc. of the entire fan spool. The exponents on each term are
intended to capture nonlinearities, possibly from the cube-square law and related effects.

The various constant numbers in (1) are baseline values, representative of a CFM56 class
engine[l]. These constants could be absorbed into the Wy, W, W, coefficients, but are left
out so that the coefficients roughly indicate the weight contributions of the core, the overall
pressure ratio, and the fan spool.

2 Model calibration

The six constants Py will be determined by nonlinear data fitting from a large number of
existing engines. With ¢ denoting the engine-model index, we use the known engine data

Wi m; , 7Toi , Q4

to minimize the least-square penalty function F,

WZ(Pk) = W(mi,ﬁoi, Q; Pk) (3)
F(Py) = Zé (g - 1) ri (4)

where r; is an arbitrary weighting factor for that engine model.
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3 Least-squares system solution

The six unknown parameters are determined by setting the F-extremum derivatives to zero.
The resulting equations are nonlinear, and will be solved by the Newton method.

It’s convenient to first define the partial derivatives of F with respect to the six parameters.
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The 6 Newton residuals and the associated approximate 6 X6 Jacobian matrix can then be
defined by summing over all engine models.
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Starting from some initial-guess Py,

the Newton system is constructed and solved for the

fit-constant changes 0Py, which are then used to obtain the next guess Pyt

T 0P, —Ry (14)
Pt Pr + 6Py (15)
Operations (12)—(15) are now repeated until |Ry| drop below some tolerance. A suitable
measure of the resulting data-fit error £ is
2F
E = 16
2T (16)

which in effect is a weighted standard deviation.

Provided that Jj; is reasonably well conditioned, convergence of the iterated sequence (12)-
(15) is very rapid. An ill-conditioned system will result if the engine data does not sufficiently
span the influence of one or more of the components in Py.



4 Computed data fits

Public data for about 40 civil turbofan engines has been used to compute the fit constants
shown in Table 1. Note that the condition number is extremely large, indicating that the
system is quite ill-conditioned, even though the least-squares fit error is reasonable, as can
also be seen in Figure 1. The ill-conditioning is either due to some of the constants in Py
being nearly linearly dependent, or due to them having little influence on Ry.

Table 1: Fit constants for turbofan engines. Condition number C' = 87380.
bm bﬂ' ba WO Ww Wa
0.97056 1.05264 1.28604 1580.61b 375.01b 1478.81b
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Figure 1: Weight-prediction error for sampled engines, versus engine weight. Fitting error
&€ = 0.0540.

For the case in Table 1 and Figure 1, the ill-conditioning mainly originates in the exponents b,
having nearly the same effect on WV as the coefficients W ,, at the sampled engine parameter
values. A simple fix is to freeze the exponents at some reasonable values, by redefining their
residuals and associated Jacobians for k=1, 2, 3.

Ry
R
Rs

Tk

b, — 1.0 (17)

by — 1.0 (18)

b, — 1.2 (19)
1, k=1

{0 -y (20)
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The results are shown in Table 2 and Figure 2, which show that the fitting error is increased
only slightly. However, the condition number is greatly improved, so that the results are much
less sensitive to additional sampled engines than previously. The system for the remaining
three fitting constants W, is now also linear, so that conventional linear regression could
have been used to obtain them instead of the Newton method described here.

Table 2: Fit constants for turbofan engines. Condition number C' = 2213.
bm bﬂr ba WO Wﬂ' Wa
1.00000 1.00000 1.20000 1684.51b 17.71b 1662.2 1b
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Figure 2: Weight-prediction error for sampled engines, versus engine weight, with frozen
fitting exponents. Fitting error £ = 0.0556.

5 Nacelle weight model

A suitable weight model for the nacelle is given by Beltramo et at[2]. This is broken down
into the inlet cowl between the lip and fan, the cowl around the fan, the exhaust cowl between
the fan and the fan nozzle, and the core cowl.

Wnace = inlet 1 Wfan + Wexit + Wcore (21)
Each weight component is in turn correlated to its surface area and fan diameter as

Wintet = Aintet (2.5 + 0.0238 diap) (22)
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Wian = Afan 1.9 (23)
Wexit = Aexit (2.5 + 0.0363 dap) (24)
Weore = Acore 1.9 (25)
where the areas A, are in square feet, dg,, is in inches, and the resulting weights are in

pounds. A convenient way to specify the fan cowl area portions is as fractions of the overall
nacelle area Sy,ce, which in turn is specified as some multiple rg_, .. of the fan frontal area.

Snace = TSpace 71'(dfaun/2)2 (26)
Ainlet - finlet Snace (27)
Afan = ffan Snace (28)
)

Aexit = fexit Snace (29

The core cowl area is assumed to be some multiple of the LPC frontal area, specified by its
diameter dipc.

Acore = Tcore 7T(dLP‘C/2)2 (30)
Representative values for the ratios and fractions are listed below.
,rsnace 12
Jinet = 0.4
f fan — 0.2
f exit — 0.4
Tcore = 12

6 Accessory and pylon weight models

The added weight of the accessories is assumed to be some fraction of the engine bare weight,

Wadd = fadd Wbare (31)

and the pylon weight is assumed to be proportional to the total weight mounted at the end
of the pylon.

Wpylon = fpylon(Wbare + Wadd + Wnace) (32)
Suitable values for the fractions are listed below.
faaa = 0.10
Jpylon = 0.10
The overall engine system weight is the sum of all the components defined above.
Weng - Wbare + Wadd + Wnace + Wpylon (33)
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